Ultra-high-energy emission from an evolving gamma-ray burst: neutrinos, cosmic rays, and gamma rays

Mauricio Bustamante

Center for Cosmology and Astroparticle Physics (CCAPP) The Ohio State University

IceCube Particle Astrophysics Symposium (IPA) May 05, 2015

Reminder – why GRBs might be UHE CR & ν sources

- radiated gamma-ray energy of $\sim 10^{52} 10^{54}$ erg
- intense magnetic fields of up to $\sim 10^5$ G
- magnetically-confined p's shock-accelerated to ~ 10¹² GeV
- TeV-PeV neutrinos created via $p\gamma$ interactions with source photons
- plus: low backgrounds (for v's) due to small time window

Current status: experiments (IceCube, ANTARES) are starting to strongly constrain the emission models

ICECUBE, Nature 484, 351 (2012); ICECUBE, 1412.6510; ANTARES, JCAP 1303, 006 (2013)

Therefore: it is time to take a more detailed look at the models

The fireball model – internal collisions

Fireball model: blobs, or shells, of plasma, at relativistic speeds, collide with each other, merge, and emit UHE particles

- We have simulated individual collisions
- Computed the UHE ν, CR, γ-ray emission from each
- Spoiler: we found a minimal GRB diffuse neutrino flux, only weakly dependent on burst parameters

Initialising the burst simulation

Initial number of plasma shells in the jet: $\gtrsim 1000$

Initial values of shell parameters:

- Width of shells and separation between them: *I* = *d*
- Equal kinetic energy for all shells ($\sim 10^{52}$ erg)
- Shell speeds Γ_{k,0} follow a distribution (log-normal or other)

Propagating and colliding the shells

During propagation:

- speeds, masses, widths do not change (only in collisions)
- the new, merged shells continue propagating and can collide again

Evolution stops when either:

- a single shell is left; or
- $\blacktriangleright\,$ all remaining shells have reached the circumburst medium ($\gtrsim 6\times 10^{11}$ km)

final number of collisions

 \approx number of initial shells (\gtrsim 1000)

S. Kobayashi, T. Piran, and R. Sari, *ApJ* **490**, 92 (1997) F. Daigne and R. Mochkovitch, *MNRAS* **296**, 275 (1998)

Particle emission from a collision

In each collision, UHECRs escape as either:

- neutrons: created in $p\gamma$ interactions, accompanied by ν 's; or
- protons: they leak out of the shell without creating v's

Mauricio Bustamante (CCAPP OSU)

Producing the UHE ν 's, CRs, γ rays

Joint production via $p\gamma$ interactions at the source, *e.g.*,

$$\begin{aligned} p\gamma &\to \Delta^{+} (1232) \to \begin{cases} n\pi^{+} \\ p\pi^{0} \end{cases} \\ \pi^{+} &\to \mu^{+}\nu_{\mu} \to \bar{\nu}_{\mu} e^{+}\nu_{e}\nu_{\mu} \\ \pi^{0} &\to \gamma\gamma \\ n \to p e^{-}\bar{\nu}_{e} \end{aligned}$$

- **•** proton spectrum: $\sim E^{-2}$ with cut-off
- photon spectrum: broken power law (normalised to observed gamma-ray emission of 10⁵³ erg)

Numerical ν flux calculation via NeuCosmA

- ▶ $p\gamma \rightarrow \Delta^+$ (1232) $\rightarrow \pi^0, \pi^+, \ldots$
- extra K, n, π^- , multi- π production modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum
- neutrino flavour transitions

S. HÜMMER, P. BAERWALD, AND W. WINTER, PRL 108, 231101 (2012); see also H. He et al., ApJ 752, 29 (2012)

Synthetic light curves

An emission pulse is assigned to each collision

- their superposition yields a synthetic light curve:

Different particles come from different jet regions

Emission of different species peaks at different collision radii -

Why?

As the fireball expands, photon and proton densities fall (as $R_{\rm C}^{-2}$) $\Rightarrow \nu$ production decreases

Why does it matter?

GRB parameters derived from gamma-ray observations might not be adequate to (directly) describe ν and UHECR emission

MB, P. BAERWALD, K. MURASE, AND W. WINTER *Nature Commun.* **6**, 6783 (2015)

See also GLOBUS et al. 1409.1271

A robust minimal diffuse ν flux from GRBs

Take the simulated burst as stereotypical

Quasi-diffuse neutrino flux, assuming 667 identical GRBs per year:

How is the new prediction different?

- The top-contributing collisions are at the photosphere
- Pion production efficiency there is independent of Γ:

$$f_{
ho\gamma}^{
m ph}\sim 5\cdot rac{arepsilon}{0.25}\cdot rac{\epsilon_e}{0.1}\cdot rac{1\ {
m keV}}{\epsilon_{\gamma,{
m break}}'}$$

- ε : energy dissipation efficiency
- ϵ_e : fraction of dissipated energy as e.m. output (photons)
- \blacktriangleright \Rightarrow Time-integrated neutrino fluence dominated is independent of Γ :

$$\mathcal{F}_{
u} \propto rac{N_{ ext{coll}}\left(f_{\mathcal{P}\gamma} \gtrsim 1
ight)}{N_{ ext{coll}}^{ ext{tot}}} imes \min\left[1, f_{\mathcal{P}\gamma}^{ ext{ph}}
ight] imes rac{\epsilon_{\mathcal{P}}}{\epsilon_{m{e}}} imes E_{\gamma- ext{tot}}^{ ext{iso}}$$

- Compare to standard predictions, which have a $\langle \Gamma \rangle^{-4}$ dependence
- Raising \(\epsilon_p\) automatically decreases \(\epsilon_e\), so the photosphere grows, but still \(\phi\) 10 photospheric collisions dominate

How is the new prediction different?

- The top-contributing collisions are at the photosphere
- Pion production efficiency there is independent of Γ:

$$f_{
ho\gamma}^{
m ph}\sim 5\cdot rac{arepsilon}{0.25}\cdot rac{\epsilon_e}{0.1}\cdot rac{1\ {
m keV}}{\epsilon_{\gamma,{
m break}}'}$$

- $\varepsilon :$ energy dissipation efficiency
- ϵ_e : fraction of dissipated energy as e.m. output (photons)
- \blacktriangleright \Rightarrow Time-integrated neutrino fluence dominated is independent of Γ :

$$\mathcal{F}_{\nu} \propto \frac{\overset{\sim}{N_{\text{coll}}(f_{p\gamma} \gtrsim 1)}}{\overset{N_{\text{tot}}}{N_{\text{coll}}^{\text{tot}}} \times \min\left[1, f_{p\gamma}^{\text{ph}}\right] \times \underbrace{\overset{10}{\overset{\sim}{\frac{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}} \times \underbrace{\overset{10}{\overset{\epsilon_{p}}{\epsilon_{e}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}_{\gamma-\text{tot}}}_{\gamma-\text{tot}}_{\gamma-\text{to$$

- Compare to standard predictions, which have a $\langle \Gamma \rangle^{-4}$ dependence
- Raising \(\epsilon_\rho\) automatically decreases \(\epsilon_\epsilon\), so the photosphere grows, but still \(\phi\) 10 photospheric collisions dominate

The prediction is robust

Simulations show only weak dependence of the flux on the boost Γ ...

... and on the GRB engine variability time δt_{eng}

12/13

Conclusions ... and the future

- GRBs are good UHECR and ν source candidates
- Simulating multiple internal collisions reveals where different particles come from
- We have derived a minimal GRB v flux from superphotospheric internal collisions
- The prediction is only weakly dependent on burst parameters
- We need next-gen neutrino telescopes (IceCube-Gen2, KM3NeT)

More to come (in preparation):

Mauricio Bustamante (CCAPP OSU)

Backup slides

GRBs: the most luminous explosions in the Universe

- brief flashes of gamma rays: from 0.1 s to few 100's s
- isotropically distributed in the sky
- ► they are far: most occur at ~ 1 Gpc from us (z ≈ 2)
- they are rare: ~ 0.3 Gpc⁻³ yr⁻¹
- two populations:
 - short-duration (< 2 s): neutron starneutron star or NS-black hole mergers
 - long-duration (> 2 s): associated to hypernovae
- powered by matter accretion onto a black hole

NeuCosmA: (revised) GRB particle emission - I

In a collision, UHE protons, photons, and neutrinos are emitted:

- ► From Fermi shock acceleration: $N'_{
 ho} \left(E'_{
 ho}
 ight) \propto E'^{-lpha_{
 ho}}_{
 ho} e^{-E'_{
 ho}/E'_{
 ho,max}}$
- ▶ Photon density at source has same shape as observed:

$$\mathcal{N}_{\gamma}'\left(\mathcal{E}_{\gamma}'
ight) = \left\{ egin{array}{ccc} \left(\mathcal{E}_{\gamma}'/\mathcal{E}_{\gamma, ext{break}}'
ight)^{-lpha_{\gamma}} &, \ \mathcal{E}_{\gamma, ext{min}}' \leq \mathcal{E}_{\gamma}' < \mathcal{E}_{\gamma, ext{break}}' \\ \left(\mathcal{E}_{\gamma}'/\mathcal{E}_{\gamma, ext{break}}'
ight)^{-eta_{\gamma}} &, \ \mathcal{E}_{\gamma}' \geq \mathcal{E}_{\gamma, ext{break}}' \\ \mathbf{0} &, \ ext{otherwise} \end{array}
ight.$$

 $lpha_\gamma=$ 1, $eta_\gamma=$ 2.2, $E'_{\gamma,{
m min}}=$ 0.2 eV, $E'_{\gamma,{
m break}}=$ 1 keV

NeuCosmA: (revised) GRB particle emission - II

Normalise the densities at the source – for one collision:

Photons:

$$\underbrace{\int E_{\gamma}' N_{\gamma}' (E_{\gamma}') dE_{\gamma}'}_{\text{iso}} = \frac{E_{\gamma-\text{sh}}^{\text{iso}}}{V_{\text{iso}}'}$$

total energy density in photons

baryonic loading (energy in *p*'s / energy in *e*'s + γ 's), *e.g.*, 10

► Protons:

$$\underbrace{\int E'_{\rho} N'_{\rho} \left(E'_{\rho} \right) \ dE'_{\rho}}_{\int E'_{\rho} I'_{iso}} = \frac{1}{f_{e}} \frac{E'_{iso}}{V'_{iso}}$$

total energy density in protons

NeuCosmA: (revised) GRB particle emission - III

NeuCosmA calculates the injected/ejected spectrum of secondaries $(\pi, K, n, \nu, \text{ etc.})$: $x \equiv E'/E'_{\rho}$ $y \equiv E'_{\rho}E'_{\gamma}/(m_{\rho}c^2)$

$$Q'(E') = \int_{E'}^{\infty} \frac{dE'_{\rho}}{E'_{\rho}} N'_{\rho}(E'_{\rho}) \int_{0}^{\infty} c \, dE'_{\gamma} \, N'_{\gamma}(E'_{\gamma}) \, R\left(\mathbf{x}, \mathbf{y}\right)$$
response function

R contains cross sections, multiplicities for different channels

What does NeuCosmA include?

$$\blacktriangleright p\gamma \to \Delta^+ (1232) \to \pi^0, \pi^+, \ldots$$

- extra K, n, π⁻, multi-π production modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum
- neutrino flavour transitions

Initial distribution of shell speeds

Distribution of initial shell speeds (Lorentz factors):

$$\ln\left(\frac{\Gamma_{k,0}-1}{\Gamma_0-1}\right) = A_{\Gamma}x$$

x follows a Gaussian distribution, $P(x) dx = dx e^{-x^2/2}/\sqrt{2\pi}$

Mauricio Bustamante (CCAPP OSU)

Two important points:

1
$$E'_{p,\max}$$
 is determined by energy-loss processes:
 $t'_{acc}(E'_{p,\max}) = \min \left[t'_{dyn}, t'_{syn}(E'_{p,\max}), t'_{p\gamma}(E'_{p,\max}) \right]$

2 Photons can be trapped in the source by pair production:

$$\gamma + \gamma \rightarrow e^+ + e^-$$

Photosphere: radius where $\tau_{\gamma\gamma} (E'_{\gamma}) = 1$ for all E'_{γ}

Optical depth:

$$\tau_n = \frac{t_{p\gamma}^{-1}}{t_{dyn}^{-1}}\Big|_{E_{p,max}} = \begin{cases} \lesssim 1 , & \text{optically thin source} \\ > 1 , & \text{optically thick source} \end{cases}$$

Particles can escape from within a shell of thickness λ'_{mfp} :

$$\lambda_{\rho,\mathsf{mfp}}^{\prime}\left(E^{\prime}\right) = \min\left[\Delta r^{\prime}, R_{L}^{\prime}\left(E^{\prime}\right), ct_{\rho\gamma}^{\prime}\left(E^{\prime}\right)\right] \\ \lambda_{n,\mathsf{mfp}}^{\prime}\left(E^{\prime}\right) = \min\left[\Delta r^{\prime}, ct_{\rho\gamma}^{\prime}\left(E^{\prime}\right)\right] \right\} f_{\mathsf{esc}} = \frac{\lambda_{\mathsf{mfp}}^{\prime}}{\Delta r^{\prime}}$$

fraction of escaping particles

We need direct proton escape

Scan of the GRB emission parameter space -

 $\begin{array}{ccc} \text{acceleration} & \longrightarrow & \eta = 0.1 \\ \text{efficiency} & \longrightarrow & \eta = 1.0 \end{array}$

P. BAERWALD, MB, AND W. WINTER, ApJ 768, 186 (2013)

we need high efficiencies \Rightarrow direct proton escape *is* required

Accelerating iron

- Photodisintegration destroys nuclei close to the center (~ 10⁸ km) e.g., ANCHORDOQUI et al., Astropart. Phys. 29, 1 (2008)
- However, they can survive at large radii:

Mauricio Bustamante (CCAPP OSU)

Anatomy of an internal collision

1 Propagation

Anatomy of an internal collision

Anatomy of an internal collision

Part of the initial kinetic energy radiated as γ 's, ν 's, p's, and n's:

Tracking each collision individually

Each collision occurs in a different emission regime – $(R_{\rm C}:$ collision radius)

MB, P. BAERWALD, K. MURASE, AND W. WINTER Nature Commun. 6, 6783 (2015)