Ultra-high-energy emission from an evolving gamma-ray burst: neutrinos, cosmic rays, and gamma rays

Mauricio Bustamante

Center for Cosmology and Astroparticle Physics (CCAPP) The Ohio State University

IceCube Particle Astrophysics Symposium (IPA)
May 05, 2015

The Ohio State University

Reminder - why GRBs might be UHE CR \& ν sources

- radiated gamma-ray energy of $\sim 10^{52}-10^{54} \mathrm{erg}$
- intense magnetic fields of up to $\sim 10^{5} \mathrm{G}$
- magnetically-confined p's shock-accelerated to $\sim 10^{12} \mathrm{GeV}$
- TeV-PeV neutrinos created via $p \gamma$ interactions with source photons
- plus: low backgrounds (for ν 's) due to small time window

Current status: experiments (IceCube, ANTARES) are starting to strongly constrain the emission models

ICECube, Nature 484, 351 (2012); ICECUbE, 1412.6510; ANTARES, JCAP 1303, 006 (2013)

Therefore: it is time to take a more detailed look at the models

The fireball model - internal collisions

Fireball model: blobs, or shells, of plasma, at relativistic speeds, collide with each other, merge, and emit UHE particles

*

- We have simulated individual collisions
- Computed the UHE ν, CR, γ-ray emission from each
- Spoiler: we found a minimal GRB diffuse neutrino flux, only weakly dependent on burst parameters

Initialising the burst simulation

Initial number of plasma shells in the jet: $\gtrsim 1000$

Initial values of shell parameters:

- Width of shells and separation between them: $I=d$
- Equal kinetic energy for all shells ($\sim 10^{52} \mathrm{erg}$)
- Shell speeds $\Gamma_{k, 0}$ follow a distribution (log-normal or other)

Propagating and colliding the shells

- speeds, masses, widths do not change (only in collisions)
- the new, merged shells continue propagating and can collide again

Evolution stops when either:

- a single shell is left; or
- all remaining shells have reached the circumburst medium ($\gtrsim 6 \times 10^{11} \mathrm{~km}$)
final number of collisions
\approx
number of initial shells ($\gtrsim 1000$)
S. Kobayashi, T. Piran, and R. Sari, ApJ 490, 92 (1997)
F. Daigne and R. Mochkovitch, MNRAS 296, 275 (1998)

Particle emission from a collision

In each collision, UHECRs escape as either:

- neutrons: created in $p \gamma$ interactions, accompanied by ν 's; or
- protons: they leak out of the shell without creating ν 's

Producing the UHE ν 's, CRs, γ rays

Joint production via $p \gamma$ interactions at the source, e.g.,

$$
\begin{aligned}
& p \gamma \rightarrow \Delta^{+}(1232) \rightarrow\left\{\begin{array}{l}
n \pi^{+} \\
p \pi^{0}
\end{array}\right. \\
& \pi^{+} \rightarrow \mu^{+} \nu_{\mu} \rightarrow \bar{\nu}_{\mu} e^{+} \nu_{e} \nu_{\mu} \\
& \pi^{0} \rightarrow \gamma \gamma \\
& n \rightarrow p e^{-} \bar{\nu}_{e}
\end{aligned}
$$

- proton spectrum: $\sim E^{-2}$ with cut-off
- photon spectrum: broken power law (normalised to observed gamma-ray emission of $10^{53} \mathrm{erg}$)

Numerical ν flux calculation via NeuCosmA
$-p_{\gamma} \rightarrow \Delta^{+}(1232) \rightarrow \pi^{0}, \pi^{+}, \ldots$

- extra K, n, π^{-}, multi- π production modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum
- neutrino flavour transitions

Synthetic light curves

An emission pulse is assigned to each collision

- their superposition yields a synthetic light curve:

Total energy in gamma-rays:

1000 initial shells $\mapsto 990$ collisions
$t_{\text {obs }} / \mathrm{s}$
mb, P. Baerwald, K. Murase, W. Winter Nature Commun. 6, 6783 (2015)

Different particles come from different jet regions

Emission of different species peaks at different collision radii -

Why?

As the fireball expands, photon and proton densities fall (as R_{C}^{-2}) $\Rightarrow \nu$ production decreases

Why does it matter?

GRB parameters derived from gamma-ray observations might not be adequate to (directly) describe ν and UHECR emission

```
mB, P. Baerwald, K. Murase, and W. Winter Nature Commun. 6, 6783 (2015)
```

See also Globus et al. 1409.1271

A robust minimal diffuse ν flux from GRBs

- Take the simulated burst as stereotypical
- Quasi-diffuse neutrino flux, assuming 667 identical GRBs per year:

How is the new prediction different?

- The top-contributing collisions are at the photosphere
- Pion production efficiency there is independent of Γ :

$$
f_{\rho \gamma}^{\mathrm{ph}} \sim 5 \cdot \frac{\varepsilon}{0.25} \cdot \frac{\epsilon_{e}}{0.1} \cdot \frac{1 \mathrm{keV}}{\epsilon_{\gamma, \text { break }}^{\prime}}
$$

ε : energy dissipation efficiency
ϵ_{e} : fraction of dissipated energy as e.m. output (photons)
$\Rightarrow \Rightarrow$ Time-integrated neutrino fluence dominated is independent of Γ :

$$
\mathcal{F}_{\nu} \propto \frac{N_{\text {coll }}\left(f_{p \gamma} \gtrsim 1\right)}{N_{\text {coll }}^{\text {tot }}} \times \min \left[1, f_{p \gamma}^{\mathrm{ph}}\right] \times \frac{\epsilon_{p}}{\epsilon_{e}} \times E_{\gamma-\mathrm{tot}}^{\mathrm{iso}}
$$

- Compare to standard predictions, which have a $\langle\Gamma\rangle^{-4}$ dependence
- Raising ϵ_{p} automatically decreases ϵ_{e}, so the photosphere grows, but still ~ 10 photospheric collisions dominate

How is the new prediction different?

- The top-contributing collisions are at the photosphere
- Pion production efficiency there is independent of Γ :

$$
f_{\rho \gamma}^{\mathrm{ph}} \sim 5 \cdot \frac{\varepsilon}{0.25} \cdot \frac{\epsilon_{e}}{0.1} \cdot \frac{1 \mathrm{keV}}{\epsilon_{\gamma, \text { break }}^{\prime}}
$$

ε : energy dissipation efficiency
ϵ_{e} : fraction of dissipated energy as e.m. output (photons)
$\Rightarrow \Rightarrow$ Time-integrated neutrino fluence dominated is independent of Γ :

$$
\begin{aligned}
& \mathcal{F}_{\nu} \propto \frac{N_{\text {coll }}}{\left.\sim f_{p \gamma} \gtrsim 1\right)} \\
& N_{\text {coll }}^{\text {tot }}
\end{aligned} \times \min \left[1, f_{p \gamma}^{\mathrm{ph}}\right] \times\left(\frac{\epsilon_{p}}{\epsilon_{e}}\right) \times E_{\gamma-\text { tot }}^{10}{ }^{10^{53} \mathrm{erg}}
$$

- Compare to standard predictions, which have a $\langle\Gamma\rangle^{-4}$ dependence
- Raising ϵ_{p} automatically decreases ϵ_{e}, so the photosphere grows, but still ~ 10 photospheric collisions dominate

The prediction is robust

Simulations show only weak dependence of the flux on the boost $\Gamma \ldots$

\ldots and on the GRB engine variability time $\delta t_{\text {eng }}$

Conclusions . . . and the future

- GRBs are good UHECR and ν source candidates
- Simulating multiple internal collisions reveals where different particles come from
- We have derived a minimal GRB ν flux from superphotospheric internal collisions
- The prediction is only weakly dependent on burst parameters
- We need next-gen neutrino telescopes (IceCube-Gen2, KM3NeT)

More to come (in preparation):

Backup slides

GRBs - what are they?

GRBs: the most luminous explosions in the Universe

- brief flashes of gamma rays: from 0.1 s to few 100 's s
- isotropically distributed in the sky
- they are far: most occur at $\sim 1 \mathrm{Gpc}$ from us ($z \approx 2$)
- they are rare: $\sim 0.3 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- two populations:
- short-duration (<2 s): neutron starneutron star or NS-black hole mergers
- long-duration (> 2 s): associated to hypernovae
- powered by matter accretion onto a black hole

NeuCosmA: (revised) GRB particle emission - I

In a collision, UHE protons, photons, and neutrinos are emitted:

proton density at the source $\left[\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right]$
photon density at the source

$$
=\underbrace{Q_{\nu}^{\prime}\left(E_{\nu}^{\prime}\right)}_{\text {ejected neutrino spectrum }\left[\mathrm{GeV}^{-1} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}\right]}
$$

- From Fermi shock acceleration: $N_{p}^{\prime}\left(E_{p}^{\prime}\right) \propto E_{p}^{\prime-\alpha_{p}} e^{-E_{p}^{\prime} / E_{p, \text { max }}^{\prime}}$
- Photon density at source has same shape as observed:

$$
\begin{gathered}
N_{\gamma}^{\prime}\left(E_{\gamma}^{\prime}\right)= \begin{cases}\left(E_{\gamma}^{\prime} / E_{\gamma, \text { break }}^{\prime}\right)^{-\alpha_{\gamma}} & , E_{\gamma, \text { min }}^{\prime} \leq E_{\gamma}^{\prime}<E_{\gamma, \text { break }}^{\prime} \\
\left(E_{\gamma}^{\prime} / E_{\gamma, \text { break }}\right)^{-\beta_{\gamma}} & , E_{\gamma}^{\prime} \geq E_{\gamma, \text { break }}^{\prime} \\
0 & \text { otherwise }\end{cases} \\
\quad \alpha_{\gamma}=1, \beta_{\gamma}=2.2, E_{\gamma, \text { min }}^{\prime}=0.2 \mathrm{eV}, E_{\gamma, \text { break }}^{\prime}=1 \mathrm{keV}
\end{gathered}
$$

NeuCosmA: (revised) GRB particle emission - II

Normalise the densities at the source - for one collision:

- Photons:

$$
\underbrace{\int E_{\gamma}^{\prime} N_{\gamma}^{\prime}\left(E_{\gamma}^{\prime}\right) d E_{\gamma}^{\prime}}_{\text {otal energy density in photons }}=\frac{E_{\gamma-\text { sh }}^{\text {iso }}}{V_{\text {iso }}^{\prime}}
$$

baryonic loading (energy in p 's / energy in e's + γ 's), e.g., 10

- Protons:

$$
\underbrace{\int E_{p}^{\prime} N_{p}^{\prime}\left(E_{p}^{\prime}\right) d E_{p}^{\prime}}_{\text {total energy density in protons }}=\frac{1}{f_{e}} \frac{E_{\gamma-\text { sh }}^{\text {iso }}}{V_{\text {iso }}^{\prime}}
$$

NeuCosmA: (revised) GRB particle emission - III

NeuCosmA calculates the injected/ejected spectrum of secondaries (π, K, n, ν, etc.):

$$
x \equiv E^{\prime} / E_{p}^{\prime} \quad y \equiv E_{p}^{\prime} E_{\gamma}^{\prime} /\left(m_{p} c^{2}\right)
$$

$$
Q^{\prime}\left(E^{\prime}\right)=\int_{E^{\prime}}^{\infty} \frac{d E_{p}^{\prime}}{E_{p}^{\prime}} N_{p}^{\prime}\left(E_{p}^{\prime}\right) \int_{0}^{\infty} c d E_{\gamma}^{\prime} N_{\gamma}^{\prime}\left(E_{\gamma}^{\prime}\right) R(x, y)
$$

R contains cross sections, multiplicities for different channels

What does NeuCosmA include?

- $p \gamma \rightarrow \Delta^{+}(1232) \rightarrow \pi^{0}, \pi^{+}, \ldots$
- extra K, n, π^{-}, multi- π production modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum
- neutrino flavour transitions

Initial distribution of shell speeds

Distribution of initial shell speeds (Lorentz factors):

$$
\ln \left(\frac{\Gamma_{k, 0}-1}{\Gamma_{0}-1}\right)=A_{\Gamma} X
$$

x follows a Gaussian distribution, $P(x) d x=d x e^{-x^{2} / 2} / \sqrt{2 \pi}$

$A_{\Gamma}<1$
speeds too similar, collisions only at large radii
$A_{\Gamma} \gg 1$
spread too large, too many collisions at low radii

$A_{\Gamma} \approx 1$

just right, burst has high efficiency of conversion of kinetic to radiated energy

A two-component model of CR emission - I

Two important points:
(1) $E_{p, \text { max }}^{\prime}$ is determined by energy-loss processes:
$t_{\mathrm{acc}}^{\prime}\left(E_{p, \max }^{\prime}\right)=\min \left[t_{\mathrm{dyn}}^{\prime}, t_{\mathrm{syn}}^{\prime}\left(E_{p, \max }^{\prime}\right), t_{p \gamma}^{\prime}\left(E_{p, \max }^{\prime}\right)\right]$
(2) Photons can be trapped in the source by pair production:

$$
\gamma+\gamma \rightarrow e^{+}+e^{-}
$$

Photosphere: radius where $\tau_{\gamma \gamma}\left(E_{\gamma}^{\prime}\right)=1$ for all E_{γ}^{\prime}

A two-component model of CR emission - II

Optical depth:

$$
\tau_{n}=\left.\frac{t_{p \gamma}^{-1}}{t_{\mathrm{dyn}}^{-1}}\right|_{E_{p, \max }}= \begin{cases}\lesssim 1, & \text { optically thin source } \\ >1, & \text { optically thick source }\end{cases}
$$

Particles can escape from within a shell of thickness $\lambda_{\text {mfp }}^{\prime}$:

$$
\left.\begin{array}{l}
\lambda_{p, \text { mfp }}^{\prime}\left(E^{\prime}\right)=\min \left[\Delta r^{\prime}, R_{L}^{\prime}\left(E^{\prime}\right), c t_{p \gamma}^{\prime}\left(E^{\prime}\right)\right] \\
\lambda_{n, \text { mfp }}^{\prime}\left(E^{\prime}\right)=\min \left[\Delta r^{\prime}, c t_{p \gamma}^{\prime}\left(E^{\prime}\right)\right]
\end{array}\right\} f_{\mathrm{esc}}=\frac{\lambda_{\mathrm{mfp}}^{\prime}}{\Delta r^{\prime}}
$$

We need direct proton escape

Scan of the GRB emission parameter space -

acceleration \longrightarrow
$\eta=0.1$

$$
\eta=1.0
$$

P. Baerwald, MB, and W. Winter, ApJ 768, 186 (2013)
we need high efficiencies \Rightarrow direct proton escape is required

Accelerating iron

- Photodisintegration destroys nuclei close to the center ($\sim 10^{8} \mathrm{~km}$) e.g., Anchordoqui et al., Astropart. Phys. 29, 1 (2008)
- However, they can survive at large radii:

Anatomy of an internal collision

(1) Propagation

Anatomy of an internal collision

(1) Propagation

(2) Collision

Anatomy of an internal collision

(1) Propagation

(2) Collision

Part of the initial kinetic energy radiated as γ 's, ν 's, p 's, and n 's:

$$
\begin{gathered}
E_{\mathrm{coll}}^{\text {iso }}=(E_{\mathrm{kin}, f}^{\text {iso }}-E_{\text {kin }, m}^{\left.E_{\text {iso }}^{\text {iso }}\right)}+(E_{\text {kin }, m}^{1 / 12}-\underbrace{\epsilon_{B} E_{\mathrm{coll}}^{\text {iso }}}_{\text {energy in magnetic fields }}-\underbrace{\left.E_{\text {kin }, s}^{\text {iso }}\right)}_{\text {energy in baryons }} \\
\underbrace{\epsilon_{e} E_{\mathrm{coll}}^{\text {iso }}}_{\text {energy in photons }}
\end{gathered}
$$

Tracking each collision individually

Each collision occurs in a different emission regime (R_{C} : collision radius)

$\nu_{\mu}+\bar{\nu}_{\mu}$ fluence neutrinos

(observer's frame)
maximum p energy
cosmic rays

maximum γ energy
gamma rays

(source frame)

MB, P. Baerwald, K. Murase, and W. Winter
Nature Commun. 6, 6783 (2015)

