Simulation study for the proposed gamma-ray detector array ALTO

Satyendra Thoudam

Yvonne Becherini Michael Punch

Linnaeus University Växjö, Sweden

10 Nov. 2016, Puebla, Mexico

Linnæus University

Introduction

- Some properties of air shower particles at high altitude
- Brief description of ALTO detector array
- Monte-Carlo simulation
- Reconstruction of air shower parameters for gammas & protons
- Preliminary estimates of array performance
- To do list

Linnæus University

3

Lateral distribution of air shower particles (Energy>1 MeV)

Linnæus University

5

ALTO Detector

Antares Optical Module

Antares Optical Module

Antares Optical Module

Detector simulation: GEANT4 (version 10.2)

· All material properties are included

- Density
- Refractive index as function of wavelength
- Photon reflectivity, absorption and scattering coefficients as function of wavelength

All important physical processes are included

- Electro-magnetic processes:
 - Y's: Photoelectric effect, Compton scattering, Pair production, Rayleigh scattering
 - e^{\pm} , μ^{\pm} , π^{\pm} , nuclei: Multiple scattering, ionisation, bremsstrahlung, annihilation (positrons)
 - Unstable particles: Decay

Optical processes:

- Cherenkov photons production
- Scintillation photons production
- Absorption, scattering

Particle tracking

- All particles are completely tracked by GEANT4 except for optical photons
- Optical photons (Cherenkov & scintillation) are produced in million in each tank
 - Almost impossible to track all of them
- For optical photons inside water tank:
 - Only those that would hit the optical module are allowed to track by GEANT4
 - Rest are killed at the point of emission
- For optical photons inside scintillator:
 - They are not tracked in the simulation
 - We use a library of PMT signals (waveforms) generated for e-, μ and Υ as function of their
- energy, position and incident angle.

Reconstruction of air shower parameters

¹⁴ Linnæus University

Air shower simulation: CORSIKA(version 7.4000)

Parameter	Gamma-rays	Protons
Observation height	5.1 km	Same
Energy	10 GeV-100 TeV	100 GeV-100 TeV
Spectral slope	-2.0	-2.7
Zenith angle	Fixed at 18°	0°-30°
Azimuth angle	Fixed at 180°	0°-360°
Magnetic field	ALMA site	Same
Core position (from the array center)	0-100 m	Same
No. of showers	~I7 million	~212 million

Preliminary analysis cuts

Trigger cut No. of detectors trigger ≥ 3

Reconstruction cut

Parameter	Value	
No. of detectors trigger	≥20	
Recons. shower core position	<60 m	
Shower size accuracy, (N _e _err/N _e)	(60-10)% from 10GeV to 100 TeV	
Moliere radius, r _M	No cut	
Shower age, s	No cut	

Energy distribution after different trigger cuts

Gamma showers

Proton showers

A gamma-ray event (Energy 1 TeV) Zenith 18 deg.)

¹⁸ Linnæus University

Gamma-ray event 2 (Energy 1 TeV, Zenith 18 deg.)

¹⁹ Linnæus University

Gamma showers: Core reconstruction accuracy

*Energy 1-1.5 TeV; Zenith 18 deg. *R_{Core}<60 m

²⁰ Linnæus University

Gamma showers: Direction reconstruction accuracy using plane fit

*Energy 1-1.5 TeV; Zenith 18 deg. *R_{Core}<60 m

²¹ Linnæus University

Proton event 1 (Energy 1 TeV, Zenith 18 deg.)

²² Linnæus University

Proton event 2 (Energy 1 TeV, Zenith 18 deg.)

²³ Linnæus University

Proton events (Energy 5 TeV) Zenith 18 deg.)

Proton showers: Core reconstruction accuracy

Zenith=15°-21°, R_{Core}<60 m

10

Proton showers: Direction reconstruction accuracy Zenith=15°-21°, R_{Core}<60 m

Reconstruction accuracies as function of energy

ALTO

(RCore<60 m)

Gamma showers: Energy reconstruction

Recons. size VS True Energy

28

Gamma showers: Trigger/reconstruction efficiencies

²⁹ Linnæus University

Plans for S/B discrimination

- ★ Define new discriminating parameters, and use the BDT classification procedure
- ★ New parameters include scintillator layer signals
- ★ Cuts optimised per bins in energy, zenith angle, and tank multiplicity
- ★ Very similar analysis procedure as applied to H.E.S.S: Astroparticle Physics, 34, 12, July 2011, Pages 858-870
- \star 2-month work full-time
- \star Expected improvement from baseline sensitivity
 - a factor of 2 from scintillator array,
 - a factor of 2 from analysis method;

Summary

- We are currently working on a detailed Monte-Carlo simulation of ALTO
- Preliminary results have shown that:
 - A trigger threshold as low as 300 GeV can be reached with proper reconstruction of shower parameters (NDet≥20)
 - Core resolution below 5 m for energy above 1 TeV
 - Angular resolution below 1.2° above 1 TeV
 - Energy resolution ~ 60-32% above 1 TeV

To do list

.

- Improve arrival direction reconstruction using more realistic assumption for the shower front
- Improve core reconstruction of gamma showers below 1 TeV
- Understand large systematic shift between true and reconstructed core for proton showers below 10 TeV (though no effect on gammas, it seems)
- $\cdot\,$ Determine Gamma/hadron separation cuts using Boosted Decision Tree method
- Sensitivity estimates

Thank you for your attention

³¹ Linnæus University

