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The ice anisotropy: 
Connecting IceCube‘s large scale observations 
to the microstructure of ice cores
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IceCube: An instrument for glaciology

Each DOM is 
equipped with 12 
LEDs for ice studies
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Highlights of ice calibration
2005GL024236

● 8 IceCube holes dust logged by Ryan Bay
→high resolution image of the relative concentration
    of optical impurities

● Below 1500m near perfect optical properties as air 
bubbles get incorporated into ice fabric (craigite)

● Depth offset between logs shows ice tilt,
distortion of ice layers due to underlying bedrock 

● Combination of dust logger data and LED analysis
yields absolute absorption / scattering length in 10m bins
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Rivers of ice
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The ice anisotropy

Ice flow direction

● Anisotropy: exhibiting properties with different values
  when measured in different directions

● Light traveling along the flow axis is scattered less then light propagating 
along the tilt → on the flow axis more light, on average arrives earlier

● It is not a subtle effect!
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Original parametrization

● Simply scaling the scattering length would violate 
the time- and space-reversal symmetries of the 
scattering cross sections
→ the anisotropy is implemented as an angular 
     modification of the scattering function f

● Evaluated against a coordinate system aligned 
with the direction of largest scattering in the xy-
plane → the anisotropy axis

● To conserve the overall scattering length we 
demand:

→ 3 free parameters (axis, kappa1, kappa2)
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Photon propagation & likelihood analysis

Initialize photon
with distance to absorption

Dice distance to 
next scattering

Step through layers until 
absorbed, scattered or detected 

Kill photon

     If detected 
    or absorbed
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Deflect by random angle 
from scattering function

An event contains average binned waveforms 
→ This is compared against MC simulation

The fit minimizes the GOF (or other observables).
One simulation takes (200-5000 GPU hours)

 → can't use a minimizer (pick by hand)

i sums over all emitting & receiving DOMs and their time bins

On GPUs ~250 times
 faster then CPUs
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Anisotropy axis over the array
● Fit the phase of the intensity modulation 

to determine the anisotropy axis
with the detector slided in depth or by cable

● Axis appears to be constant over the face of 
the detector and versus depth

→ assumed to be constant at 130°
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Detector average strength
● The average anisotropy strength has been evaluated in a full 2D parameter scan

● kappa2 ~ -0.5 kappa1 → kappa3 ≠ 0
→ the anisotropy is not purely azimuthal, but also effects propagation
     as a function of zenith

● As the 2D scan is not yet finished for all depth bins, assume for now that
kappa2 = -0.5 kappa1 holds at all depths

Toy simulation
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Anisotropy strength over the array

● Averaging along individual String, the anisotropy looks
to be fairly homogeneous over the surface of the detector

● Only DeepCore Strings, which are on average deeper,
have a systematically weaker anisotropy

→ study the depth dependence averaged over the entire detector area
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Anisotropy strength vs. depth

● The anisotropy strength appears constant above 2000m, is badly constrained in the 
dust layer  and exhibit a slight weakening between 2000-2300m

● In the very deep ice the azimuth anisotropy suddenly nearly vanishes
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Questioning the approach

→ let‘s turn to ice cores to motivate a more physical parametrization

● While modifying the scattering function is an elegant solution, it is hard to motivate 
● Rotation of dust particles has been proposed, 

but is hard to explain on the microscale

● In addition it was found that a better data description is achieved when
treating the absorption with the same anisotropy measured for the scattering

● This does not make sense if the scattering probability is not the underlying cause
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Ice grains 

● A solid block of ice contains monocrystals (grains), that grow 
independently, the surfaces where they met are called boundaries

● As the surface of a ice core sample sublimates the grain 
boundaries leave grooves on the surface which can be imaged

● Ice grain sizes range from sub-mm2 to thousands of mm2
with aspect ratios between 1 and 1.8 → elongated

● Ice is a HOT material
→ the lattice undergoes constant recrystallization
    which shifts the grain boundaries or bends and breaks grains

(Black regions = gases)

dx.doi.org/1 0.1016/j.jsg .2013.09.01 0
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Ice grains and c-axis orientation

Projection of c-axis vectors
of an ensemble 

of grains

● Monocrystaline ice (a grain) is a birefringent material

● Using imaging polarization analyzers (fabric analyzer) a 
false color image showing the c-axis vector of each grain 
can be produced and their population can be studied

Jan Eichler, 2013
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The woodcock parameter
General orientation tensor (kth order):

Second order gives matrix with unity trace and:

Woodcock parameter:

which give the lengths of the shape of the scatter 
plots with respect to a set of eigenvectors.

Jan Eichler, 2013
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Ice grains & c-axis vs. depth
● Deep glacial ice shows a girdle fabric 

(c-axis preferentially horizontally aligned)

● In a girdle fabric the grain elongation- and c-axis are correlated 
→ use LPO diagrams as high statistics, 3D tool for elongation alignment

● BUT for still not fully understood reasons nearly all glaciers show the fabric 
suddenly turning unimodal in the bottom 10% of the ice

EDML ice core; dx.doi.org/10.1098/rsta.2015.0347
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Micro inclusions
The Cryosphere, 11, 1075–1090, 2017
www.the-cryosphere.net/11/1075/2017/
doi:10.5194/tc-11-1075-2017

● Glaciologists see point like dark inclusions below the 
surface, these are speculated to be dust or gas
(doesn't really matter to us because they act as Mie scattering centers anyway)

● Distribution in vertical slices is highly inhomogeneous

● Horizontal slices are not yet sufficiently studied
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Impurity aggregation
● It is suggested that refreezing grain boundaries can drag along or be pinned by 

impurities, leading to a distribution which is non-homogenous 

● grains are elongated and that their long axis
is aligned with the flow
→ dust filaments preferentially aligned with flow 
→ on the macro-scale: 
                less scattering parallel, 

   more diagonal to the flow

More scattering
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New parametrization

● Assuming non-homogeneous dust distributions, 
scaling the scattering length does not violate 
symmetry requirements

● Given the evidence from ice cores non-
homogeneous dust seems very plausible

● As such modify the absorption & scattering length:

where α
θ/ϕ

 are the zenith and azimuth strength

● This parametrization has the added advantage of 
accounting for the local anisotropy during the entire 
propagation and not only at the the photon source 
(absorption anisotropy) and the scattering vertices 
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Fitting the new parametrization

Detector average

For the new parametrization a complete 2D scan 
has been performed, for the average detector,
30m & 60m layers.

Positive zenith anisotropy = average grain aspect 
ratio is larger in the azimuth then in the zenith plane
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Fitting the new parametrization

 

● Zenith & azimuth anisotropy appear constant above 2000m, 
and exhibit a slight weakening between 2000-2300m

● In the very deep ice the azimuth anisotropy weakens by ~30%
while the zenith anisotropy vanishes completely (and potentially reverses)

● Overall the new parametrization achieves the same quality of data description
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Glaciological predictions

Why is the new parametrization exciting?

In the context of impurity aggregation it yields predictions on the fabric:

● Assuming all impurities to be on grain boundaries,
α

zenith
 and α

azimuth
 are the average grain elongation in the respective planes

BUT: That assumption is stupid & the grain elongation can already be measured,
   the impurity distribution on the other hand is hard to measure....

● Given elongation information from SpiceCore we can deduce the fraction of 
impurities on the grain boundaries

● As this should in first order be independent of the plane,
azimuth and zenith can be used as cross-checks

→ better understanding of ice flow characteristics
 



Martin Rongen
Polar Science Workshop

September 2017

23

Summary

Thank you for your attention!
Questions are welcome

● IceCube Neutrino Observatory is also a kilometer seized instrument to study 
the optical properties of deep, slowly flowing ice

● IceCube observes anisotropic scattering and absorption aligned with the ice flow

● It can be equally well parametrized by a modification of the scattering function
OR a directional dependent scattering length

● While the modification of the scattering function is hard to motivate /interpret,
a directional scattering length can be understood
by impurities aggregating on elongated grain boundaries 

● Combining data from IceCube and ice cores can help test models regarding the 
distribution of impurities in the ice fabric
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The timing caveat
MC-MC fitData fit

● While the likelihood optimizes the overall light curves, we can also check 
individual timing & charge observables

● Timing observables are known to be wonky 
→ only minimize azimuthal modulation, still does not recover common truth

● Things checked so far: Oversizing, g, f
sl
, absorption scaling, global 

     scattering/absorption, parametrization
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