ALTO progress in Monte Carlo Simulations and Prototyping Efforts

http://alto-gamma-ray-observatory.org

Michael Punch - APC Laboratory, Paris (France), IN2P3/CNRS & Linnaeus University --- for the ALTO group ----Yvonne Becherini – Linnaeus University (Sweden) Satyendra Thoudam - Linnaeus University (Sweden) Jean-Pierre Ernenwein - Aix-Marseille University (France)

- A Wide Field-of-View (~ 2 sr) gamma-ray observatory:
 - In the Southern hemisphere \rightarrow Daily observations of Southern sources
 - At high altitude (~ 5 km)

the Crafoord Foundation (Sweden)

The ALTO project

Particle detectors

٠

- Hybrid detectors
- Excellent timing accuracy
- Modular design ٠
- Simple to construct
- Long duration
- "Open Observatory"

- \rightarrow Observations may be done 24h per day
- \rightarrow Improved S/B discrimination

 \rightarrow Low threshold E \geq 200 GeV

- \rightarrow Improved angular resolution (~ 0.1° at few TeV)
- \rightarrow Phased construction and easy maintenance
- \rightarrow Minimize human intervention at high-altitude
- \rightarrow Should operate for 30 years
- → Distribute data to the community "à la Fermi-LAT"

ALTO Science Goals

Daily monitoring of Southern targets:

- Transients and variable sources;
- Active Galactic Nuclei, Gamma-Ray Bursts (if spectra favourable), X-ray binaries;
- Galactic centre and central region;
- Alerts to other observatories;
- Multi-year light-curves;
- High-end of the sources' spectra;
- Search for Pevatrons;

H.E.S.S. PKS 2155-304 (blazar) flare

Study of extended sources:

Fermi Bubbles, Vela SNR, AGN radio lobes;

Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory, and Ilana Feain, Tim Cornwell, and Ron Ekers (CSIRO/ATNF), R. Morganti (ASTRON), and N. Junkes (MPIfR)

Other accessible goals:

- Search in past data if detections of:
 - gravitational waves or
 - neutrinos;
- Study of the cosmic-ray composition and anisotropy;
- Dark matter searches;
- EBL studies (if threshold low enough);
- Search for Lorentz invariance violation;
- Axion-like particles from distant AGNs.

Current Collaboration

Sweden	France
 Department of Physics and Electrical	 APC Laboratory, IN2P3/CNRS, Paris Michael Punch Contacts with Jean-Christophe Hamilton
Engineering, Linnaeus University,	(discussions about the site) Aix-Marseille University Jean-Pierre Ernenwein LAL/Orsay Dominique Breton
Växjö Pl Yvonne Becherini Post-doc Satyendra Thoudam Two PhD students just started (50%) Mohanraj Seniappan: MVA Rejection Tomas Bylund: DAQ & Control Industry: TBS Yard AB, Torsås Industrial construction,	(discussions on electronics) CEA/Saclay Eric Delagnes
responsible Lars Tedehammar	(discussions on electronics)

Discussions with other parties in Academia/Research Institutes:

- Los Alamos Laboratory, U.S.
- North-West University, Potchefstroom, South Africa

Key design characteristics of the full array

- Altitude (~ 5km):
 - For Physics goals, as a survey/alert instrument for transients
- Fine-grained array of 1242 units:
 - Smaller Water Cherenkov
 Detector (WCD) tanks
 than HAWC
 - Low dead-space
 ("packing factor" ~70%)
 - Improved angular resolution

An ALTO "cluster"

Cluster = Group of 6 Units = $6 \times (WCD + SLD)$

- WCDs on concrete "table"
- SLDs below "table", on telescopic rails

Each cluster to have common:

- Electronics readout unit
- Solar panel + battery
- Communication/data to central DAQ room by fibre only

ALTO Electronics

- Readout electronics box, powered by solar panels
- Communications, by fibre-optic connections only, to central DAQ
- Electronics box containing:
 - "WaveCatcher" from CEA/CNRS
 - Analogue memory (Switched Capacitor Array)
 - 12-bit, 0.4-3.2 GS/s fast digitizers
 - 1024 samples depth/channel
 - Includes coincidence logic to start read-out
 - 12-channel version soon available
 - Low power consumption (~20W)
 - The WaveCatcher family of SCA-based
 12-bit 3.2-GS/s fast digitizers:
 Breton et al., Real Time Conference (RT), 2014 19th IEEE-NPSS
 - Time-stamping of Read-out trigger to ns precision
 - White Rabbit node (e.g. TiCkS-SPEC board from APC)
 - "TiCkS: A Flexible White-Rabbit Based Time-Stamping Board", Champion et al., ICALEPCS2017, Barcelona, Spain, 2017
- Probably a Single Board Computer (Arduino / BeagleBone ...)
 - For local control and monitoring, autonomy in case of connection loss

ALTO Simulations

Air shower simulation: CORSIKA (version 7.4000)

- Realistic model of Earth's atmosphere, magnetic field, refractive index,
- Electromagnetic and hadronic interactions based on particle physics models

Detector simulation: GEANT4 (version 10.2)

- All material properties are included
- Density, refractive index as function of wavelength
- Photon reflectivity, absorption and scattering coefficients as function of wavelength

All important physical processes are included

- Electro-magnetic processes:
 - Y's: Photoelectric effect, Compton scattering, Pair production, Rayleigh scattering
 - e^{\pm} , μ^{\pm} , π^{\pm} , nuclei: Multiple scattering, ionisation, bremsstrahlung, annihilation (positrons)
 - Unstable particles: Decay
- Optical processes:
 - Cherenkov and Scintillation photons production
 - Their emission spectrum, absorption, scattering

Particle tracking

- All particles are completely tracked by GEANT4 except for optical photons inside water tank
- Optical photons (Cherenkov/Scintillation) are produced ~100,000 in each tank
- For optical photons inside water tank:
 - Only those that would hit the PMT are allowed to track by GEANT4
- For optical photons inside scintillator:They are all tracked by GEANT4

Single particles from Air Showers Energy Distribution

ALTO

- Shower Muons have median energy a factor of several hundred higher than Shower Gammas/Electrons
- Factor >100 more Muons at median in Proton vs. Gamma showers

12

13 🎙

Single particles from Air Showers Energy Distribution

- Shower Muons have median energy a factor of several hundred higher than Shower Gammas/Electrons
- Factor >100 more Muons at median in Proton vs. Gamma showers

For particles injected at top of ALTO unit:

Water tank response range to electrons/muons Scintillator response range to electrons/muons

ALTO Array simulated response

ALTO simulated performance after simple square cuts

Final S/B analysis cuts still under development:

- Ideal detector would only see muons in the scintillator layer, but in fact some faint signal leaks beyond the concrete layer also for Gamma-ray showers;
- Several S/B parameters under investigation on Water-Cherenkov and scintillator tanks;
- Final S/B analysis will use Boosted Decision Trees in TMVA.

ALTO prototype at Linnaeus University in Växjö, Sweden

- Construction starts January 2nd 2018
- Several PMT solutions will be tested;
- Fully funded: construction of two full ALTO units, with 4-tank concrete layer
- The empty slots will be equipped with (smaller) additional scintillator boxes

ALTO prototype setup in Växjö

ALTO prototype construction at Linnaeus University: **Status**

- We received the building permit
- Currently the water tanks (carbon fibre and PVC foam) being produced in Torsås by TBS Yard AB
- Aluminium SLC tanks to start when design is finalized (see "pre-protos")
- Ground preparation starting in January, using existing pipe for fibres/poser
- Next step will be the construction of the concrete structure, installation of tanks
- Tests...

ALTO Pre-prototyping

- Many test-benches, all with readout triggered by small (10x20cm) muon-paddles, read by "WaveCatcher"
 - All compared with GEANT4 simulations to find reflectivity, absorption, etc.
- Small water tank viewed from above by 8" PMT, to test
 - blackness of the internal "gel-coat"
 - Effects over time with strong chlorine concentration (bio-growth, leaching)
 - \rightarrow 20x normal swimming pool concentration OK for now
- "Scintillator rails" read by 2" PMT
 - To test Aluminium material used in lower tank
 - Comparison of measured and expected (from GEANT4 simulations, adjusting reflectivity & polish)
 - \rightarrow led to redesign using folded 0.5mm Al sheet
 - No welding, much simpler construction
- Large scintillator tank read by 8" PMT
 - To test aluminium material with final PMT immersed in Scintillator
 - Test of re-design \rightarrow Confirmation of simplicity of construction
 - Result scalable to full-sized tank (factor ~x2 PE from reflections on walls)
- Comparison with a deeper (10cm) tank with Water (not scintillator) but with liner to replace scintillator tank, currently running
 - May be able to reduce costs, avoid some radioactivity triggers

22

Project time-line & Next steps

- 2018 Validation of prototype design;
 - At LnU campus, with "Antares Surface Array"

- 2019 If design & funding requests successful:
 - Installation of one or more ALTO clusters at the site in the Southern hemisphere;
 - Flat-pack construction ("IKEA-type") assembly by local crew or "base camp"

ALTO site in South America

- Presence of water nearby is a key factor, to lower the costs
- In order to simplify and be quick, we are aiming for the installation of 2-3 full ALTO clusters behind the site of QUBIC/LLAMA in Argentina, at an altitude of 4850 m
 - Synergies within APC lab which is working on QUBIC
- We should be in the back lobe of QUBIC in order not to disturb the QUBIC experiment data taking
- There might also be the possibility to share infrastructure, power, network, roads
- The 2-3 cluster installation will allow us
 - To further test the construction feasibility at high altitude
 - To acquire further experience on singles and coincidence rates
 - To build partnerships with local industries

- ALTO is a new project, financially supported primarily by Linnaeus University and Swedish private Foundations for now;
- The project's aim:
 - → to build a wide FoV VHE gamma-ray observatory with enhanced sensitivity with respect to current WCDA technology;
- Simple design:
 - → limits costs of construction in full production phase; Prototype costs higher;
- Collaboration between Academia and Industry:
 - → cost-effective solutions;
 - → knowledge transfer benefiting both parties;
- Possible location of the observatory:
 - → Argentina, near QUBIC/LLAMA;
- Aimed investment cost for full deployment
 - → ~ 20M€ excluding salaries;
- Expansion of collaboration:
 - $\rightarrow\,$ to cover costs, expertise in DAQ, design optimisation
- Status of the project with further information can be found at the website:
 - → http://alto-gamma-ray-observatory.org/
- For enquiries about the project, please contact yvonne.becherini@lnu.se

Backups

Exploded view of Water Tank

Exploded view of Scintillator Tank

