Sensitivity of a surface array as a function of various parameters.

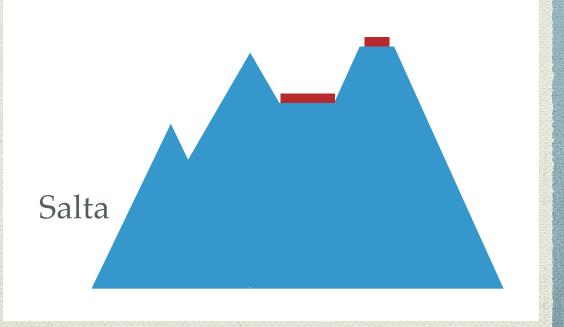
Andrew Smith University of Maryland

What is the point of this talk?

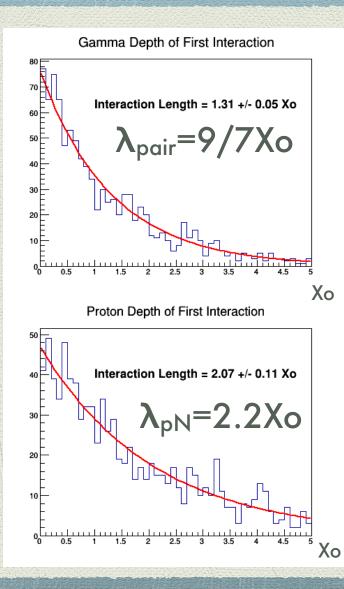
- Detector design is always a tradeoff.
- * To maximize the sensitivity to the highest energy showers (>10 TeV), it is clear that very large detectors (>>20,000 m²) are optimal.
- * At low energies (<500 GeV) the optimal tradeoffs are less clear.</p>
 - * Obvious answer seems to be elevation is everything (higher = lower threshold, right?)
 - Be careful, because larger detectors have an improved sensitivity at lower energies too, through improved collection area and improved gamma/hadron separation.

Questions for Detector Designers:

- * How does the sensitivity change with increasing detector elevation?
- How does the sensitivity change with increasing Area?
- What role do angular resolution, background rates and gamma/hadron separation play?

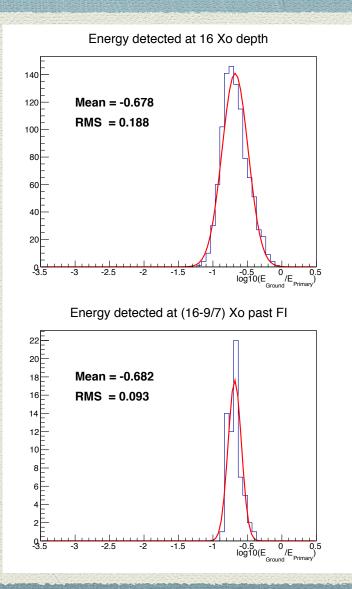

My Principle Concern

Assume:

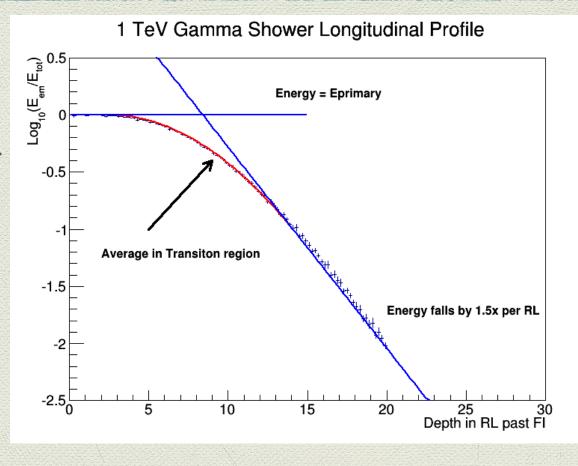

 There exists some very high elevation site with limited area.
 There exists a somewhat lower elevation site that can accommodate a larger detector.

Concern:

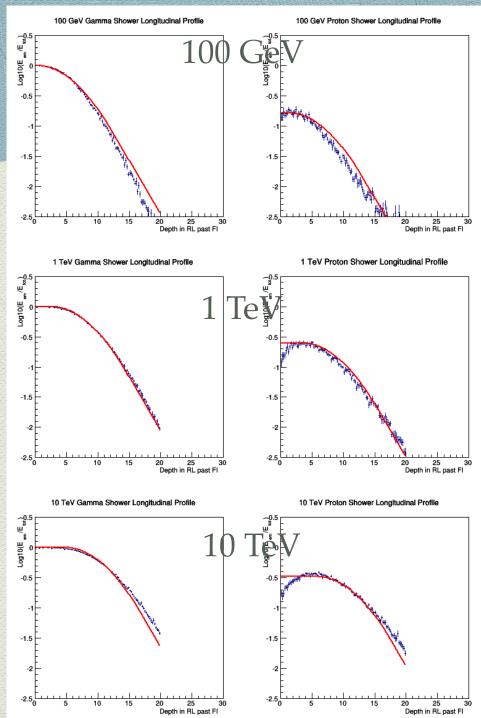
People argue about tradeoffs between high energy (lower, bigger) and low energy sensitivity <u>Hope:</u> A larger lower detector can be better for both low and high energies.



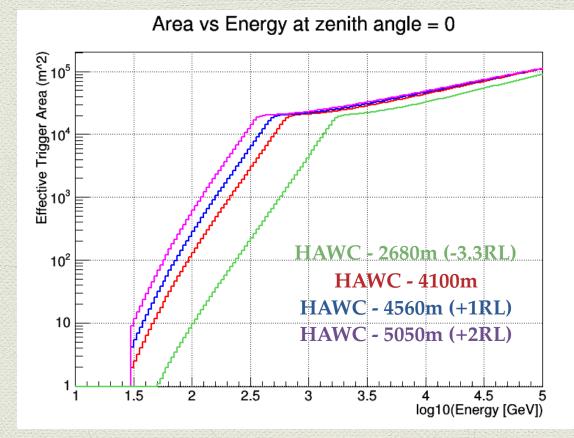
First Interaction Depth dominates Longitudinal Fluctuations

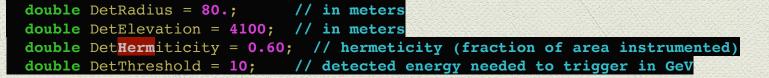

First Interaction depth distribution is easily predictable, depending only on λ_{pair} or hadronic interaction length

Fluctuations in energy at the ground is dominated by FI.


Simple model for energy vs level

- At low depths, energy "loss" dominated by brems. (e) and pair/Compton (gamma). No energy is lost from the shower.
- At high energies, gammas still lose energy through pair and Compton, but electrons lose most of their energy through ionization (1.5x loss per RL).
- Approximate the energy past the FI with 2 lines, where a smooth transition is achieved by averaging the curves. +/-3 RL.


Depth of transition = $\log(E/Ec) + C$


- * Compare model to data. Works OK for gammas.
- * Hadron:
 - p->X —> many Pions.
 - * Some energy taken away by baryons.
 - Pions are equally produced in 3 types, +,-,0
 - * $\pi 0 \longrightarrow \gamma \gamma$
 - * $\pi + / \longrightarrow \mu \nu$ or re-interacts
- At low energy, charged pions decay: 1/3 of pion energy goes to EM particles.
- At high energy, charged pion re-interactions produces a larger EM component.
- EM component is energy dependent, approximate with:
 - fracE = 0.33*(log10(EPrimary)/4.);

Determining Sensitivity is an analytic process: Just do an integral.

- Integrate over: Core Radius, FI depth for a given primary Energy, Zenith Angle, Detector Parameters.
- Use NKG x (1/r) as profile for energy vs radius vs age.
- Detector is a round calorimeter with a radius and an energy threshold.
 - * HAWC Thresh: 5-10 GeV
 - * ~20PE/GeV, with ~4PE/hit at threshold
 - * ~5 hits/GeV
- Configuration looks like:

Effect of increasing elevation:

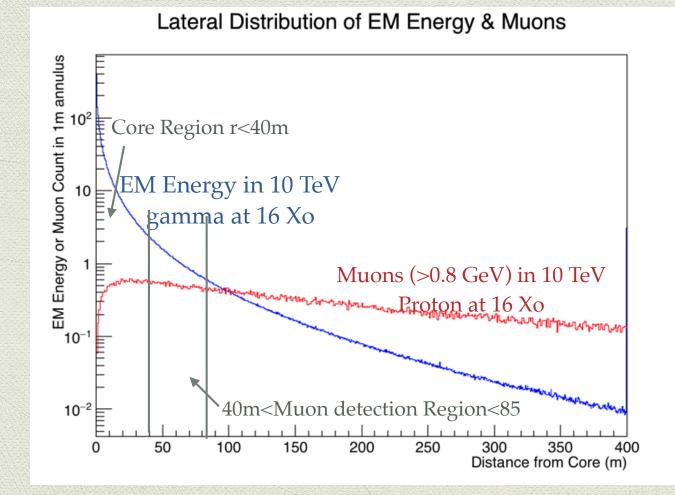
- Increase by 1 RL and sensitivity to ~100-500 GeV showers:
 - gamma rate increases by $e^{7/9} = 2.2$
 - hadron rate increases by e^{37/82} = 1.6
 (not sure about this since hadron energy is not the same as gamma energy)
 - $Q_{Elevation} = 2.2 / sqrt(1.6) per RL = 1.7$
- IRL ~= 500m, so 1.11x increase per 100m

Effect of Increasing Area:

- Detector needs to be large enough to contain showers.
- Moliere radius is ~20m. Assume 10m edge is not usable, so effective area for a circular detector is something like:

 $A_{\rm Eff} = \pi ({\rm sqrt}(A/\pi) - 10{\rm m})^2$

- Background and Signal proportional to A_{Eff}:
- * Effect of doubling detector size:
 - * $5000m^2 \longrightarrow 10,000m^2$: A_{Eff} $\longrightarrow 2.41x$
 - * 10,000 $m^2 \rightarrow 20,000m^2$: A_{Eff} $\rightarrow 2.26x$
 - * $20,000m^2 \longrightarrow 40,000m^2$: A_{Eff} $\longrightarrow 2.17x$


Q_{Double Area} ~=1.5

Gamma-Hadron Separation

- Note, muons generally penetrate deeply and are not attenuated by the atmosphere.
- What's missing from the previous calculation is that the gamma/hadron separation efficacy depends on area and elevation also:
 - Large Area = more collection area for muons
 - High Elevation = Backgrounds from lower energy hadrons, which have fewer muons.

Gamma/Hadron Separation: Lateral Distribution of EM energy and Muons

Muon lateral distribution is very broad!

How many more muons might we get from a larger detector?

Increasing area by a factor of 4x increases number of muons by a factor of ~2x

Doubling area gives ~1.4x increase in muons detected.

Muon count roughly proportional to energy.

Bkg Passing ~ $exp(-N_{\mu})$

Table shows number of muons in shower core region and surrounding regions

	All Muons	<40m	40m - 85m	85m - 180m
1 TeV	26.1	1.9	2.8	4.8
Area (m²)		5000	22000	100000
Muon Increase			x2.5	x2.0
Area Increase			x4.5	x4.5

Number of Muons vs Core Distance

Larger Detector

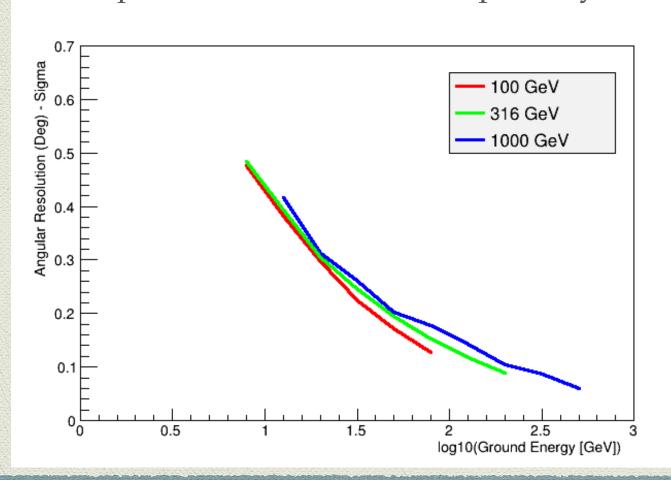
- At one detector size, we expect N muons.
- Double the area and get 1.4xN muons

 $Q = \exp(-N)/\exp(-1.4N)$

- Background for low-energy events is typically from 200-500 GeV hadrons.
- Likely Q is 1.5 or larger.
- Combined Q-factor for γ/h and increasing collection area:

 $Q = 1.5 \times 1.5 = 2.3$

Ν	0.5	1	2
1.4xN	0.7	1.4	2.8
Q	1.2	1.5	2.2


Pulling it all Together:

- Increasing elevation by 100m (Q=1.11) has same improvement as increasing the area of the detector by about 9%.
- A detector at 5000m a.s.l. (1.8 RL above HAWC) would have 1.7^{1.8} = 2.6x better sensitivity than HAWC to the lowest energy showers.
- A HAWC-like detector that is only 10,000m² (45% of the area of HAWC, or -1.15 doublings) would have a sensitivity 2.3^{1.15} = 2.6x worse than HAWC's

A note on angular resolution

Ang Difference between ground particle momentum and primary

Angular Resolution Depends only on ground energy.

