Probing Cosmic Ray Anisotropy with Atmospheric Neutrinos

Lizz Wills, for the IceCube Collaboration Drexel University

October 10, 2017

UNIVERSITY

Drexel University

CRA2017

Overview
00000

A Different CRA Skymap

- History of many excellent measurements in the North:
 Milaro, HAWC, Argo-YBJ, Super-K, Tibet Array, Auger
- IceCube has a high-statistics southern sky anisotropy measurement
- But there remains untapped potential:
 - For every cosmic ray, we get daughter neutrinos

$$\mathbf{p} \rightarrow \begin{cases} \pi^- \rightarrow \mu^- + \bar{\nu}_\mu \\ \pi^+ \rightarrow \mu^+ + \nu_\mu \end{cases}$$

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	2 / 26

Benefits of a Neutrino Search

- Anisotropy yet unobserved in neutrinos
- Allows verification of expected particle production
 - Or maybe unexpected outcomes
- IceCube could observe the signal in both the North and South Skies
 Pole-to-pole coverage
- Allows for first study of absolute pointing with neutrinos for IceCube

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	3 / 26

Can we observe the Northern Sky Cosmic Ray Anisotropy in atmospheric neutrinos?

L. Wills	Drexel University	2017-10-10
$ u_{atm} $ Dataset	CRA2017	4 / 26

L. Wills

Challenge: Neutrino Interaction Cross Section ANL, PRD 19, 2521 (1979) IHEP-ITEP, SJNP 30, 527 (1979) cm² / GeV) ArgoNeuT, PRI, 108, 161802 (2012) IHEP-JINR, ZP C70, 39 (1996) BEBC, ZP C2, 187 (1979) MINOS, PRD 81, 072002 (2010) BNL PRD 25, 617 (1982) NOMAD, PLB 660, 19 (2008) 1.4 CCFR (1997 Seligman Thesis) NuTeV PRD 74 012008 (2006) CDHS_ZP_C35_443 (1987) SciBooNE, PRD 83, 012005 (2011) 1.2 GGM-SPS, PL 104B, 235 (1981) SKAT, PL 81B, 255 (1979) GGM-PS, PL 84B (1979) T2K, PRD 87, 092003 (2013) (10⁻³⁸ ($\nu_{\mu} \mathbf{N} \rightarrow \mu^{-} \mathbf{X}$ 0.8 0.8 10 0.6 0 0 0.4 0.2

100 150 200

Λ 250

10

E_v (GeV)

300 350

Neutrino detections are rare.

- Lower energy, less interations
- Higher energy, more interactions
 - Attenuated by the earth
- Lower fluxes at higher energies

 $\nu_{\rm atm}$ Dataset

Drexel University

CRA2017

5 / 26

Overview 00000

Data Selecti

Methods & Results

Where does this leave us?

- 1 million events instead of billions
- Limited sample sizes only allow for larger feature studies
- Restricted in energy range

Methods & Results

Detecting Atmospheric Neturinos

In Theory:

- It's easy!
- Anything from the North must be a neutrino
- Muons will interact as they traverse the earth
- IceCube sensitive to atmospheric neutrinos from 10-100 TeV primaries

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	7 / 26

Detecting Atmospheric Neutrinos

In Practice:

- Main background is poorly-reconstructed muons from the south
 - Muon detection rate exceeds that of neutrinos
 - Misreconstructions: 10% of data
- Target Data Sample:
 - 1 million events per year of livetime
 - Final 10 year sample sensitive to cosmic ray anisotropy features from 10-100 ${\rm TeV}$
- Maximizing signal acceptance by tolerating lower purity and larger angular error

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	8 / 26

Overview 00000

L. Wills

 $\nu_{\rm atm}$ Dataset

Data Selection Summary

One Year: 132,895 events

	Final Data Rates
ExpData	4.50 mHz
MC Signal	3.98 mHz
MC Background	0.32 mHz
Signal/Data (%)	91.3
Background/Data (%)	7.28

CRA201

versity	2017-10-10
7	9 / 26

Overview 00000

Methods & Results

North Sky $\nu_{\rm atm}$ Data

L. Wills	Drexel University	2017-10-10
ν_{atm} Dataset	CRA2017	10 / 26

Data Selection 00000

Dipole Lower Energy Dependence (10-100 TeV) IceCube

Astrophys.J. 826 (2016) no.2, 220

13 TeV

We are sensitive to an energy band with constant behaviour. Insufficient statistics to allow for binning in energy.

L. Wills	Drexel University	2017-10-10
$\nu_{\sf atm}$ Dataset	CRA2017	11 / 26

Overview	Data Selection	Methods & Results	
00000	00000	••••••	
Classic			

Classic Analysis Methodology

L. Wills	Drexel University	2017-10-10
ν_{atm} Dataset	CRA2017	12 / 26

Overview 00000	Data Selection 00000	Methods & Results o●ooooooooooo	Summary O
One Year Signal I	Мар		ICECLIBE DICEXE
		IceCube	Preliminary
Signal acceptance a contamination both	nd background peak near the		

horizon

L. Wills	Drexel University	2017-10-10
ν_{atm} Dataset	CRA2017	13 / 26

Classic One Year Reference Map Average of scrambled background maps IceCube Preliminary South Pole Scrambling: ■ Time Scrambling = **RA** Scrambling Event acceptance is declination dependent: $(\theta, \phi, t) \rightarrow (\alpha, \delta)$ 360° $(\theta, \phi, t') \rightarrow (\alpha', \delta)$ Scrambling to dipole Equatorial resolution: 24 hrs 137.854 Counts

Methods & Results

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	14 / 26

Overview 00000	Data Selection 00000	Methods & Results 000●000000000	
Classic			
One Year Re	elative Intensity Map		ICECUBE
		IceCube F	Preliminary
$\frac{\Delta N_i}{\langle N \rangle_i} = \frac{N_i}{\langle N \rangle_i}$	$rac{\left(lpha,\delta ight)-\left\langle \textit{\textit{N}}_{i}\left(lpha,\delta ight) ight angle }{\left\langle \textit{\textit{N}}_{i}\left(lpha,\delta ight) ight angle }$		
1 year results statistical flue	dominated by ctuations.	360°	0°

L. Wills	Drexel University	2017-10-1
ν_{atm} Dataset	CRA2017	15 / 2

Equatorial

0.500237

 $[\Delta N / < N >]$

-0.500237

Overview 00000 Classic	Data Selection 00000	Methods & Results 0000●000000000	Summary O
One Year Sig	nificance Map		CEDJE ONVERSITY
$\sigma = \sqrt{2(a+b)}$	<u>b)</u>	IceCube Pi	reliminary
$a=N_{\rm on}\log[$	$\left(\frac{1+\alpha}{\alpha}\right) \left(\frac{N_{\rm on}}{N_{\rm on}+N_{\rm off}}\right)$		~
$b = N_{\text{off}} \log \left[\right]$	$(1{+}\alpha) \Big(rac{N_{ m off}}{N_{ m on} + N_{ m off}} \Big) \Big]$		
$\alpha {=} \frac{\mathrm{exposure_{on}}}{\mathrm{exposure_{off}}}$	L F	360°	0°
Li, Ma. 1983 ApJ 272			Equatorial
As expected, r	no significant signal		
in 1 year of da	ita.	-3.41344 Significance $[\sigma]$ 3.41344	

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	16 / 26

Overview 00000 Methods & Results

Angular Spectrum Analysis

- Insensitive to orientation
- Does allow for detection of dipole or quadrupole

L. Wills	Drexel University	2017-10-10
$\nu_{\rm atm}$ Dataset	CRA2017	17 / 26

Overview	Data Selection	Methods & Results	
00000	00000	000000●000000	
Classic			

Low Statistics Analysis Methodology

L. Wills	Drexel University	2017-10-10
ν_{atm} Dataset	CRA2017	18 / 26

1D Fit

- Reduction of dimensionality increases statistical power
- Allows for measurement amplitude
- Allows for constraint of phase
- One year is consistent with isotropy

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	19 / 26

			10 A	100
BinnedLLH				
00000	00000	0000000 000000	0	
Overview	Data Selection	Methods & Results		

Binned Likelihood Ratio Test

- Binned log-likelihood method with skymaps
- Improve sensitivity by testing for a known signal hypothesis
- The averaged time-scrambled map is used as the null hypothesis
- Analysis templates: Tibet 15 TeV, Tibet 50 TeV, Pure Dipole with feature orientation

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	20 / 26

Overview	Data Selection	Methods & Results	
		000000000000	
BinnedLLH			

Background Modeling

- Likelihood here defined as the probability product across all pixels
- Poisson probabilities to observe (n_i) given signal hypothesis (θ_i) per pixel

$$\mathcal{L} = \prod_{i} p_{i} = \prod_{i} \frac{\theta_{i}^{n_{i}} e^{\theta_{i}}}{n_{i}!}$$

Test statistics for a null hypothesis:

$$\mathsf{TS} = -2\log\frac{\mathcal{L}_{\mathsf{null}}}{\mathcal{L}_{\mathsf{template}}} = \chi_1^2$$

Wilk's Theorem: Ann. Math. Statist. Volume 9, Number 1 (1938), 60-62.

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	21 / 26

Overview 00000	Data Selection 00000	Methods & Results ○○○○○○○○●○○○	
BinnedLLH			
Projected Sen	sitivities and Discove	ery Potentials	ICECLIEE DIVERSITY
	0.07 0.06 0.05 emilieuv 0.03 0.02 0.01 0.00 2 4 6	5σ Discovery Potential 3σ Discovery Potential Sensitivity Tibet Dipole Amplitude, 15-50 TeV IceCube Preliminary 8 10 12 14 Livetime (years)	
L. Wills	Dre	xel University	2017-10-10
ν_{atm} Dataset		CRA2017	22 / 26

Overview	Data Selection	Methods & Results		
00000	00000	000000000000000000000000000000000000000	<u> </u>	0
BinnedLLH				

Tibet Template, 15 TeV

IceCube Preliminary

	Sidereal	Anti-Sidereal	Extended-Sidereal
TS	-1.60	2.07	-0.36
P-Value	0.89	0.07	0.72
Significance	-1.25σ	1.44σ	-0.60σ

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	23 / 26

Overview	Data Selection	Methods & Results	
00000	00000	000000000000000000000000000000000000000	0
BinnedLLH			

Tibet Template, 50 TeV

	~		n 1			
		ho.		LIDD.	non	
ICC.	Cu	De -				

	Sidereal	Anti-Sidereal	E x t e n d e d e r e a l
TS	-1.50	1.07	-0.23
P-Value	0.88	0.09	0.68
Significance	-1.22σ	1.30σ	-0.48σ

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	24 / 26

25 / 26

Methods & Results

Summary

Physics Target: Dipole fit of North Sky Cosmic Ray Anisotropy with $\nu_{\rm atm}$

- High acceptance dataset achieved
- Classic methodology as due diligence
- 2D binned log-likelihood method implemented for lower-statistics treatment
- Approaching sensitivity to dipole in ten years of observation
- Method successfully tested and validated on one year of data
- Full 10 year analysis to be completed in 6 months as PhD thesis

L. Wills	Drexel University	2017-10-10
ν_{atm} Dataset	CRA2017	26 / 26

Backup Slides

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	27 / 26

 $\nu_{\rm atm}$ Dataset

CRA2017

29 / 26

Skymap Templates

Cross Checks

Anti-Sidereal Cross-Check Results

Tibet 15 TeV

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	30 / 26

Skymap Templates

Extended-Sidereal Cross-Check Results

Tibet 15 TeV

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	31 / 26

LogLikelihood Analysis - Asimov Predictions

All amplitudes are multiples of the observed Tibet Amplitude

Injection Test

Injection test on 5000 trials with one year of data.

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	33 / 26

Expected Test Statistics - Asimov Predictions

L. Wills	Drexel University	2017-10-10
$\nu_{\sf atm}$ Dataset	CRA2017	34 / 26

Skymap Templates

Expected PValues - Asimov Predictions

L. Wills	Drexel University	2017-10-10
$ u_{atm}$ Dataset	CRA2017	35 / 26

Expected Significance - Asimov Predictions

L. Wills	Drexel University	2017-10-10
ν_{atm} Dataset	CRA2017	36 / 26