Magnetic fields in the Milky Way

Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

Cosmic Ray Anisotropy Workshop 2017

Guadalaiara – October 10 - 13, 2017

Outline

- Introduction
- Classical methods
- Faraday tomography

Outline

- Introduction
- Classical methods
- Faraday tomography

Observational methods

Polarization of starlight & dust thermal emission

Due to dust grains \rightarrow general (dusty) ISM \vec{B}_{\perp} (orientation only)

Produced by CR electrons \rightarrow general (CR-filled) ISM \overrightarrow{B} (strength & orientation)

Caused by thermal electrons \rightarrow ionized regions $\stackrel{\square}{\longrightarrow} B_{\parallel}$ (strength & sign)

Zeeman splitting

Molecular & atomic *spectral lines* \rightarrow neutral regions $\stackrel{\text{\tiny ISP}}{=}$ (strength & sign)

Main limitations

Except for Zeeman splitting, the classical methods are

- Indirect
 They also depend on dust, CR electrons, or thermal electrons
- Incomplete

 They do not lead to full \vec{B}
- Only 2D
 They provide only LOS-integrated quantities

To overcome the LOS-integration problem

- & gain access to the LOS dimension:
 - Faraday tomography

Outline

- Introduction
- Classical methods
- Faraday tomography

Dust polarization

- Optical starlight is polarized $\| \vec{B}_{\perp} \|$
- Infrared dust thermal emission is polarized $\perp \vec{B}_{\perp}$

Figure Credit: Philippe Terral

Dust polarization: starlight

 \vec{B} vectors from 8 662 stars

Heiles (2000)

- \blacksquare In Galactic disk : \vec{B}_{ord} is horizontal
 - Near the Sun : $\vec{\textbf{\textit{B}}}_{ord}$ is nearly azimuthal $(p \simeq -7^{\circ})$

Dust polarization: dust thermal emission

Credit. Flanck Collaboration (ESA)

- \blacksquare In Galactic disk : \vec{B}_{ord} is horizontal
 - In Galactic halo : $\vec{\textbf{\textit{B}}}_{ord}$ has vertical component

$$\mathcal{E} = f(\alpha) \, n_{\text{CRe}} \, \mathbf{B}_{\perp}^{\alpha+1} \, v^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- \Rightarrow Total intensity probes B_{\perp} (strength only)
 - Polarized intensity probes $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

$$\mathcal{E} = f(\alpha) \, n_{\text{CRe}} \, \mathbf{B}_{\perp}^{\alpha+1} \, v^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- \Rightarrow Total intensity probes B_{\perp} (strength only)
 - Polarized intensity probes $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

Figure Credit: Tess Jaffe

PI at 1.4 GHz (26m DRAO + 30m Villa Elisa)

Figure Credit: Tess Jaffe

$$\mathcal{E} = f(\alpha) \, n_{\text{CRe}} \, \mathbf{B}_{\perp}^{\alpha+1} \, \mathbf{v}^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- \Rightarrow Total intensity probes B_{\perp} (strength only)
 - Polarized intensity probes $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

Figure Credit: Tess Jaffe

PI & \vec{B} vectors at 23 GHz (WMAP)

Figure Credit: Tess Jaffe

In general (CR-filled) ISM

- ${}^{\tiny{\mbox{\tiny LSS}}}$ $\vec{\pmb{B}}$ has ordered & fluctuating components
 - Near the Sun : $B_{\rm ord} \sim 3 \,\mu{\rm G}$ & $B_{\rm tot} \sim 5 \,\mu{\rm G}$
 - Global spatial distribution : $L_{\rm B} \sim 12~{\rm kpc}~$ & $H_{\rm B} \sim 4.5~{\rm kpc}$
 - In disk : \vec{B}_{ord} is horizontal
 - In halo : \vec{B}_{ord} has horizontal & vertical components

$$\Delta \theta = \text{RM } \lambda^2$$
 where $\text{RM} = C \int n_e \, B_{\parallel} \, dl$
 $\Rightarrow \text{RM}$ probes B_{\parallel} in ionized regions

Figure Credit: Philippe Terral

$$\Delta \theta = {
m RM} \; \lambda^2 \quad {
m where} \quad {
m RM} = C \; \int n_{
m e} \; {
m \emph{\emph{B}}}_{\parallel} \; dl$$

 \Rightarrow RM probes B_{\parallel} in ionized regions

RMs of pulsars & EGRSs with $|b| < 8^{\circ}$

Han (2009)

RMs of EGRSs [NVSS $(\delta > -40^{\circ})$ + S-PASS $(\delta < 0^{\circ})$]

Figure Credit: Dominic Schnitzeler

In ionized regions

- \vec{B} has regular & fluctuating components

 Near the Sun : \vec{B}_{reg} ≈ 1.5 μG & \vec{B}_{fluct} ~ 5 μG
 - In disk : $\vec{B}_{\rm reg}$ is horizontal & mostly azimuthal Near the Sun : $\vec{B}_{\rm reg}$ is CW $(p \simeq -8^\circ)$ $\vec{B}_{\rm reg}$ reverses direction with decreasing radius
 - $\vec{\boldsymbol{B}}_{\text{reg}}$ is symmetric in z
 - In halo : \vec{B}_{reg} has horizontal & vertical components

$$\vec{\boldsymbol{B}}_{\mathrm{reg}}$$
 is CCW at $z > 0$ & CW at $z < 0$

 \rightarrow anti-symmetric in z

$$(B_{\text{reg}})_z \simeq +0.3 \,\mu\text{G}$$
 toward SGP & $\simeq 0 \,\mu\text{G}$ (?) toward NGP

→ possibly consistent with sym disk & anti-sym halo

Model of the large-scale magnetic field in the Galactic disk

van Eck et al. (2011)

Outline

- Introduction
- Classical methods
- Faraday tomography

General concept

- Underlying processes
 - Galactic synchrotron emission : polarized
 - Faraday rotation : λ-dependent
- General idea
 - Measure synchrotron polarized intensity at many different λ
 - Convert λ-dependence into LOS-dependence
- Output

Faraday cube = 3D cube of synchrotron polarized emission as $fc(\alpha, \delta, \Phi)$

More precisely

Faraday rotation of background source

$$\Delta \theta = {\rm RM} \; \lambda^2$$
 with ${\rm RM} = C \; \int_0^L n_{\rm e} \; B_{\parallel} \; dl$ (rotation measure)

Faraday rotation of Galactic synchrotron emission

Synchrotron emission & Faraday rotation are spatially mixed

$$P(\lambda^2) = \int F(\Phi) e^{2i\Phi\lambda^2} d\Phi$$
 with $\Phi(z) = C \int_0^z n_e B_{\parallel} dl$ (Faraday depth)

Fourier transform of polarized intensity: $P(\lambda^2) \rightarrow F(\Phi)$

Figure Credit: Mariike Haverkorn

Simple illustration

Figure Credit: Marta Alves

Faraday cube

For given sky area

- Derive *Faraday spectrum*, $F(\Phi)$, in many directions (α, δ)
- Combine all derived Faraday spectra into Faraday cube = 3D cube of $F(\alpha, \delta, \Phi)$

Faraday cube toward Fan region, obtained with LOFAR

(van Eck et al. 2017)

3 slices at

$$\Phi_1 = -2.0 \text{ rad m}^{-2}$$

$$\Phi_2 = -1.5 \text{ rad m}^{-2}$$

$$\Phi_3 = -1.0 \text{ rad m}^{-2}$$

Figure Credit: Marta Alves

Example of a nearby magnetized bubble

Polarized intensity at 3 different Faraday depths

Interpretation

Example of a nearby magnetized bubble

Polarized intensity at 3 different Faraday depths

Interpretation

General results

- From Faraday space to physical space
 - Uncover synchrotron-emitting & Faraday-rotating features in Faraday cube
 - Identify these features with interstellar matter structures
- For synchrotron-emitting regions

$$\int F(\Phi) d\Phi \Rightarrow \vec{B}_{\perp}$$

For Faraday-rotating regions

$$\Delta\Phi \Rightarrow B_{\parallel}$$