Interstellar Turbulence and Magnetic fields

Siyao Xu Hubble Fellow University of Wisconsin-Madison

Alex Lazarian UW-Madison

Density spectra of interstellar turbulence

Armstrong et al. 1995; Chepurnov & Lazarian 2009

Universal self-similarity in density distributions

Williams et al. 2000

Supernova driving of the interstellar turbulence

Padoan et al. 2016

Turbulent magnetic fields in the ISM

B

ESA/Plank Collaboration

Galactic Faraday sky Oppermann et al. 2012

Turbulent magnetic fields in the ISM

Crutcher et al. 2010

MHD turbulence

Synchrotron Intensity Gradients provide a new way to study B

Turbulent dynamo

Stretching vs. Diffusion

Turbulent diffusion

Turbulent reconnection & reconnection diffusion

 $< l(t)^{2} > \sim \varepsilon t^{3}$

Lazarian & Vishniac 1999

Microscopic diffusion

Damping in partially ionized gas

Damping in partially ionized gas

Damping in partially ionized gas

WNM

	Dai	F		
ISM phases	Alfvén	fast	slow	$E_{k,min}$
WNM	0.003 pc	4.0 pc	_	45.3 PeV
CNM	0.005 pc	0.1 pc	0.04 pc	1.2 PeV
MC	6.7 AU	0.002 pc	98.2 AU	18.9 TeV
DC	35.0 AU	0.009 pc	261.7 AU	0.99 PeV
at al 2010				

H₂

CNM

CR propagation in the damped MHD turbulence

Scattering of CRs in the presence of damping

<u>CR propagation in the damped MHD turbulence</u>

Parallel mean free path of CRs in the presence of damping

Xu et al. 2016

Turbulent dynamo in supernova remnants (SNRs)

Preshock

$$V_L \sim rac{\Delta
ho}{
ho} v_{
m sh}$$

Weakly ionized preshock medium

	$n_H [\mathrm{cm}^{-3}]$	n_e/n_H	T [K]	$B_0 \left[\mu \mathrm{G} \right]$
CNM	30	10^{-3}	100	5
MC	300	10^{-4}	20	5

Beresnyak et al. 2009

Draine 2011

Final distribution of the magnetic energy

del Valle et al. 2016

Turbulent dynamo in supernova remnants (SNRs)

Preshock

$$V_L \sim rac{\Delta
ho}{
ho} v_{
m sh}$$

Weakly ionized preshock medium

	$n_H [\mathrm{cm}^{-3}]$	n_e/n_H	T [K]	$B_0 \left[\mu \mathrm{G} \right]$
CNM	30	10^{-3}	100	5
MC	300	10^{-4}	20	5

Beresnyak et al. 2009

Draine 2011

Postshock

Inoue et al. 2009

Preshock

• Damping kinematic dynamo

Severe IN collisional damping

Ambipolar diffusion

Linear-in-time growth of B $B \sim \frac{3}{23} C^{-\frac{1}{2}} L^{-\frac{1}{2}} V_L^{\frac{3}{2}} t$

♦ new dynamo regime

Postshock

• Nonlinear dynamo

Equipartition between E_B and E_K

Turbulent diffusion

Linear-in-time growth of
$$E_B$$

 $E_B \sim rac{3}{38} L^{-1} V_L^3 t$

consistent with

e.g. Cho et al. 2009; Beresnyak 2012

Preshock

	$n_H [\mathrm{cm}^{-3}]$	n_e/n_H	T [K]	$B_0 \left[\mu \mathrm{G} \right]$	$k_{ u}^{-1}$ [pc]	k_{d0}^{-1} [pc]	t _{dyn} [yr]	$B_{ m dyn}$ [μ G]
CNM	30	10^{-3}	100	5	1.3×10^{-7}	1.2×10^{-4}	741.9	452.6
MC	300	10^{-4}	20	5	1.7×10^{-8}	1.6×10^{-6}	749.7	$7.7 imes 10^3$

$$E_{\rm CR, max} = eB_{\rm dyn}L$$

 4.2×10^{16} eV in the CNM 7.1×10^{17} eV in the MC.

Postshock

Comparison between our analysis & simulations (Inoue et al. 2009)

Comparison between our analysis & observations

Chandra X-ray images of the western shell of SNR RX J1713.723946.

- Amplification of the magnetic field by a factor of more than 100 (~ mG).
- The X-ray hot spots observed is located at more than 0.1 pc behind the shock front.

Uchiyama et al. 2007

