Prospects for Observation of Galactic Sources of Cosmic Neutrinos

Ali Kheirandish & Francis Halzen

IceCube Particle Astrophysics Symposium Madison, May 2017

Galactic Cosmic Ray Accelerators

- The search for Galactic cosmic neutrino sources concentrates on the search for "Pevatrons" which have the required energetics to produce cosmic rays up to the knee in the spectrum.
- Pevatrons will produce pionic gamma rays whose spectrum extends to several hundred TeV without cut off.
- Supernova remnant meet such condition.
- TeV gamma rays should be accompanied by TeV neutrinos, observable at IceCube.

Milagro TeV Sky

- 6 Sources were identified in the initial map of Milagro. The idea was to look for supernova remnants in star forming regions.
- MGRO J1908+06, MGRO 2019+37, and MGRO J2031+41 were significant (The most significant after Crab)
- MGRO J2043+36 (C1) and MGRO J2032+37 (C2): Candidate sources
- MGRO J1852: below threshold

Halzen, Kappes, & O'Murchadha, 2008 Gonzalez-Garcia, Halzen & Mohapatra 2009 Galactic plane in 10 TeV gamma rays:

Early predictions for IceCube

Neutrino spectra for all sources

- Updated flux measurements from Milagro and ARGO-YBJ reported cut-off at low energies.
- Only MGRO J1908+06 observation seemed likely.

Gonzalez-Garcia, Halzen & Niro 2013

• Studies based on hard spectra reported from Milagro claimed that IceCube should observe them after 5 years of run.

Halzen, Kappes, & O'Murchadha, 2008 **Gonzalez-Garcia, Halzen & Mohapatra 2009**

IceCube Searches

Point source searches:

MGRO 2019+37 and MGRO J1908+06 are in IceCube's source list. Upper limits reported.

Stacked Searches:

Detector	p-value		
AMANDA-II	20		
IC40	32		
IC40+59+79	20		
IC40+59+79+86-I	2		

IceCube Collaboration, Phys.Rev. D79 (2009) 062001, Astrophys.J. 732 (2011) 18, Astrophys.J. 779 (2013) 132, & Astrophys.J. 796 (2014) no.2, 109

See René Reimann's talk in the next session

(%)

Prospects for observation in IceCube

normalization and cut-off are related to new gamma ray flux measurements.

- Observation of MGRO J1908+06 flux and extension in H.E.S.S.
- Observation of MGRO J12031+41 flux and extension in ARGO-YBJ & Fermi
- Observation of MGRO J12019+37 flux and extension in VERITAS
- We updated the neutrino spectrum as single power-law with cut-off where the flux

Neutrinos from MGRO J1908+06

- High-energy gamma ray source Observed in different experiments
- Unidentified extended source: *discrepancy in measurements*
- Expected to be observed in less than 10 years of IceCube operation

F. Halzen, AK, V. Niro, Astropart. Phys. 86 (2016) 46-56

Neutrinos from MGRO J1908+06

- High-energy gamma ray source Observed in different experiments
- Unidentified extended source: *discrepancy in measurements*
- Non-observation : Constraining the spectrum parameter space

F. Halzen, AK, V. Niro, Astropart. Phys. 86 (2016) 46-56

HAWC 2HWC Catalog (17 Month)

IceCube HAWC

- Joint analysis between IceCube and HAWC collaborations using 17 month observation of HAWC and 7 years of IceCube.
- Looking for
 - Correlation study for selected sources in 2HWC
 - Correlation to the Galactic emission

Inner Galactic plane

Significance

Correlation to Cygnus region and other interesting regions in the Galaxy

Special Regions Search

80

Cygnus Region

- Very high-energy diffuse gamma ray emission claimed by Milagro
- Large uncertainties regarding the resolved sources and their extension

 Starforming region with a high level of gamma ray activity and young stars

40

Gamma ray emission from the cocoon

11

Special Regions Search

 Regions containing previously identified sources with spectra consistent with **PeVatron scenarios**

- Located at the best place for IceCube (near horizon)
- Gamma ray emission nature not well understood

AK, R. Hussain, & J. Wood

40

Galactic Longitude [deg]

Special Regions Search

Galactic Longitude [deg] 80

 Regions containing previously identified sources with spectra consistent with **PeVatron scenarios**

- Located at the best place for IceCube (near horizon)
- Gamma ray emission nature not well understood

60

AK, R. Hussain, & J. Wood

Summary

- The prospects of identifying Galactic sources of cosmic neutrinos are highly entangled with the discrepancy in gamma ray flux measurements.
- The discrepancy may come from different resolution of IACT experiments and Milagro.
- information about the nature and spectrum of the sources.
- of IceCube.
- IceCube's current study of the high-energy gamma ray emission from HAWC will help in identifying Galactic sources of cosmic neutrinos.

• Any evidence of astrophysical neutrinos from any of Galactic sources will provide valuable

Considering fluxes measured, MGRO J1908+06 observation is likely in less than 10 years

HAWC 1st Year Catalog

arXiv:1702.02992v1

HAWC:

HAWC, Gamma2016 Conference

IceCube Point Source Search Sensitivity

Galactic Plane at E> 50 TeV in HAWC

incompatible with the low-energy cut-off reported by Milagro+ARGO

K. Malone, April APS meeting 2017

MGRO J1852+01

Neutrinos from MGRO J1852+01 Milagro flux

F. Halzen, AK, V. Niro, Astropart. Phys. 86 (2017) 46-56

Neutrinos from MGRO J2031+43 **ARGO-YJB** and Fermi flux

F. Halzen, AK, V. Niro, Astropart. Phys. 86 (2017) 46-56

Neutrinos from MGRO J2019+37 VERITAS flux

F. Halzen, AK, V. Niro, Astropart. Phys. 86 (2017) 46-56

Non-Observation Constrains on Spectrum

F. Halzen, AK, V. Niro, Astropart. Phys. 86 (2016) 46-56

Stacked Analysis

- Stacked point source analysis with identified 2HWC
- Sources identified as pulsar wind nebula (PWN) are removed from the list: remaining Shells, Molecular clouds, Supernova remnants, and Unidentified sources, plus sources observed in HAWC for the first time
- Flux of the sources are used to do a weighted stacking:
 - refitting the sources spectrum as power-law with a energy cut-off at 300 TeV

Nearest TeVCat source

Name	Search	TS	RA	Dec	1	b	1σ stat. unc.	Dist.	Name
			[°]	[°]	[°]	[°]	[°]	[°]	
2HWC J0534+220	\mathbf{PS}	$1.1E{+4}$	83.63	22.02	184.55	-5.78	0.06	0.01	Crab
2HWC J0631 169	\mathbf{PS}	29.6	98.00	17.00	195.61	3.51	0.11	0.39	Geminga
2HWC J0635 180	\mathbf{PS}	27.4	98.83	18.05	195.04	4.70	0.13	0.97	Geminga
2HWC J0700 143	1.0°	29	105.12	14.32	201.10	8.44	0.80	2.98	-
2HWC J0819+157	0.5°	30.7	124.98	15.79	208.00	26.52	0.17	7.86	-
2HWC J1040+308	0.5°	26.3	160.22	30.87	197.59	61.31	0.22	8.77	-
2HWC J1104 381	\mathbf{PS}	1.15E + 3	166.11	38.16	179.95	65.05	0.06	0.04	Markarian 421
2HWC J1309 054	\mathbf{PS}	25.3	197.31	-5.49	311.11	57.10	0.22	3.27	-
2HWC J1653 397	\mathbf{PS}	556	253.48	39.79	63.64	38.85	0.07	0.03	Markarian 501
2HWC J1809-190	\mathbf{PS}	85.5	272.46	-19.04	11.33	0.18	0.17	0.31	HESS J1809-193
2HWC J1812 126	\mathbf{PS}	26.8	273.21	-12.64	17.29	2.63	0.19	0.14	HESS J1813-126
2HWC J1814 173	\mathbf{PS}	141	273.52	-17.31	13.33	0.13	0.18	0.54	<u>HESS J1813-178</u>
2HWC J1819-150 *	\mathbf{PS}	62.9	274.83	-15.06	15.91	0.09	0.16	0.51	SNR G015.4 $+00.1$
2HWC J1825-134	\mathbf{PS}	767	276.46	-13.40	18.12	-0.53	0.09	0.39	HESS J1826-130
2HWC J1829+070	\mathbf{PS}	25.3	277.34	7.03	36.72	8.09	0.10	8.12	-
2HWC J1831 098	\mathbf{PS}	107	277.87	-9.90	21.86	-0.12	0.17	0.01	HESS J1831-098
2HWC J1837-065	\mathbf{PS}	549	279.36	-6.58	25.48	0.10	0.06	0.37	HESS J1837-069
2HWC J1844-032	\mathbf{PS}	309	281.07	-3.25	29.23	0.11	0.10	0.18	HESS J1844-030
2HWC J1847-018	\mathbf{PS}	132	281.95	-1.83	30.89	-0.03	0.11	0.17	HESS J1848-018
2HWC J1849+001	\mathbf{PS}	134	282.39	0.11	32.82	0.47	0.10	0.16	IGR J18490-0000
2HWC J1852+013*	\mathbf{PS}	71.4	283.01	1.38	34.23	0.50	0.13	1.37	-
2HWC J1857+027	\mathbf{PS}	303	284.33	2.80	36.09	-0.03	0.06	0.14	HESS J1857 $+026$
2HWC J1902+048*	\mathbf{PS}	31.7	285.51	4.86	38.46	-0.14	0.18	2.03	-
2HWC J1907+084*	\mathbf{PS}	33.1	286.79	8.50	42.28	0.41	0.27	1.15	-
2HWC J1908+063	\mathbf{PS}	367	287.05	6.39	40.53	-0.80	0.06	0.14	MGRO J1908+06
2HWC J1912+099	\mathbf{PS}	83.2	288.11	9.93	44.15	-0.08	0.10	0.24	HESS J1912+101
2HWC J1914+117*	\mathbf{PS}	33	288.68	11.72	46.00	0.25	0.13	1.64	-
2HWC J1921+131	\mathbf{PS}	30.1	290.30	13.13	47.99	-0.50	0.12	1.14	-
2HWC J1922+140	\mathbf{PS}	49	290.70	14.09	49.01	-0.38	0.11	0.10	W 51
2HWC J1928+177	\mathbf{PS}	65.7	292.15	17.78	52.92	0.14	0.07	1.18	-
2HWC J1930+188	\mathbf{PS}	51.8	292.63	18.84	54.07	0.24	0.12	0.03	SNR $G054.1 + 00.3$
2HWC J1938+238	\mathbf{PS}	30.5	294.74	23.81	59.37	0.94	0.13	2.75	-
2HWC J1949+244	1.0°	34.9	297.42	24.46	61.16	-0.85	0.71	3.43	-
2HWC J1953+294	\mathbf{PS}	30.1	298.26	29.48	65.86	1.07	0.24	8.44	-
2HWC J1955+285	\mathbf{PS}	25.4	298.83	28.59	65.35	0.18	0.14	7.73	-
2HWC J2006+341	\mathbf{PS}	36.9	301.55	34.18	71.33	1.16	0.13	3.61	-
2HWC J2019+367	\mathbf{PS}	390	304.94	36.80	75.02	0.30	0.09	0.07	VER J2019+368
2HWC J2020+403	\mathbf{PS}	59.7	305.16	40.37	78.07	2.19	0.11	0.40	VER J2019+407
2HWC J2024+417*	\mathbf{PS}	28.4	306.04	41.76	79.59	2.43	0.20	0.97	MGRO J2031+41
2HWC J2031+415	\mathbf{PS}	209	307.93	41.51	80.21	1.14	0.09	0.08	TeV J2032+4130

Galactic Plane Template Search

- Stacked Search using the observed gamma ray template by HAWC
- Using the observed TS as the weight
- Using Skylab and platform provided by Zach Griffiths.

Inner Galactic plane

Modeling the flux

- emission could be modeled.
- observed by IceCube.

• With addition of Fermi sources and emission from the cocoon, the gamma ray

•If the cocoon emission is hadronic, and extends to higher energies, it should be

T. Yoast-Hull, J. Gallagher, F. Halzen, AK, E. Zweibel, arXiv:1703.02590

