

Neutrino interaction cross sections in the T2K near detectors

Tianlu Yuan for the T2K collaboration

IPA Symposium

May 8 2017

Why cross sections?

- 1. Reduce uncertainties for neutrino oscillation measurements
 - Better cross-section knowledge gives more accurate event rate predictions (c.f. talk by T. Kutter)
- 2. Probe weak interaction
 - Constrain axial vector parameters
- 3. Probe nuclear effects
 - Very important at ~GeV energies

Charged-Current interactions

Per-nucleon cross sections

At T2K's peak flux energy, CCQE dominates

Exclusive measurements are more difficult than inclusive, but also more useful

T2K neutrino flux

- Primarily v_u in neutrino mode
- Other flavors mainly from decays of muons, kaons, and wrong-sign pions
 - 3% wrong-sign contribution
- Constrained by hadronproduction data (NA61/SHINE)

 10^{8}

0

Flux (/cm²/50MeV/10²¹p.o.t) 10^{12} 10¹¹ $\overline{\nu}_{\text{e}}$ 10¹⁰ 10^{9}

3

2

Neutrino Mode Flux at ND280

5

8

7

6

10

9

E_v (GeV)

ND280

• 2.5° off-axis

- Constrains off-axis flux and background rates
- Carbon (CH), oxygen (H₂O), lead, brass, and gaseous argon targets

Beam

Off-axis Near Detector (ND280)

- Scintillator-based Pi-zero detector (POD) sits upstream of tracker
 - Water bags can be filled and drained
- Tracker with time projection chambers (TPCs) interspersed with scintillator-based detectors (FGDs) for momentum reconstruction
 - FGD2 has permanent water layers
- Surrounded by calorimeter, side muon detectors, and 0.2 T magnet

Approaches to cross-section measurements

- Simplest form: $\sigma = \frac{Event \ rate}{Flux \ *N_{targets} \ * \ \epsilon}$
 - Normalize by integrated flux
 - Background and efficiency corrections
 - Uncertainties propagated based on Poisson throws (statistics) or Gaussian variations of physics parameters (systematics)
- Differential measurements need unfolding or forwardfolding based on response matrix from MC
 - Forward folding smears MC predictions to fit to reconstructed data
 - Unfolding corrects reconstructed data based on "inverted" response matrix
- Alternatively can fit directly for cross-section parameters but this assumes a model

Final state interactions

- Particles experience final state interactions (FSI) within nucleus
 - E.g. pion absorption/production, charge exchange, rescattering
 - Alters kinematics and finalstate topology
- Reduce model dependence by quoting results in detector-observable space
 - CCQE \rightarrow CCQE-like (CC0 π)
 - CCRES \rightarrow CC1 π^+
 - Outgoing particle kinematics

arXiv:1510.05494

v_{μ} CCO π on water

POD water layers can be filled or drained → "waterin" and "water-out" detector configurations.

Select events in POD watertarget with single outgoing muon candidate that enters the Tracker.

Tracker reconstructs momentum and particle ID

 v_{μ} CCO π on water

- Unfold water-in and water-out separately
- Subtraction to get cross section on water
- Measurement in p_{μ} -cos θ_{μ}

PRD 93, 112012 (2016)

Sole

ν_{μ} CC0 π on hydrocarbon

- Require single outgoing muon
- Two independent analyses agree within errors
 - 1. Binned likelihood fit
 - 2. Bayesian unfolding
- First double-differential measurement in p_{μ} -cos θ_{μ}

P0D (π⁰-<u>detec</u>tor]

Comparison of MiniBooNE, T2K full (analysis 1), and T2K restricted (analysis 2) phase space cross sections.

CCOπ using transverse kinematic imbalance

No nuclear effects $ightarrow p_T^l = -p_T^p$

With nuclear effects \rightarrow Use asymmetries to probe FSIs [PRC 94, 015503 (2016)]

Forward folded,

maximum

likelihood fit

13

PRD 95, 012010 (2017)

 E_{ν}^{rec}

14

Sole

P0D (π⁰-<u>detec</u>tor)

- Water-enhanced sample in x-layers
- Bayesian unfolding

0.2

0.18

0.16

0.14

0.12E

0.1E

0.08E

0.06

0.04

0.02

0^E

0.5

1

1.5 2 2.5 3 3.5 4 4.5

True E_v (GeV)

 σ (E,) ($10^{-38}~{\rm cm^2}$ / Nucleon)

 GENIE differences due to inclusion of DIS to singlepion production

T2K v_u flux

NEUT prediction

GENIE prediction

NEUT average

GENIE average

T2K Run II-IV data

1.6

1.2

0.8

0.6

0.4

0.2

 $\cos \theta_{\mu,\pi}$

Antineutrino cross sections and cross-section ratios

- CC-Inclusive
- 4.3×10¹⁹ POT, FGD1
- Bayesian unfolding
- Differential in muon kinematics
- $\sigma = (0.176 \pm 0.009 (stat) \pm 0.018 (syst)) \times 10^{-38} \text{ cm}^2/\text{nucl}$

- Total inclusive cross section averaged over materials in POD
 - Water, scintillator, and brass
- Ratio: $\frac{\sigma(\overline{\nu})}{\sigma(\nu)}$
 - $0.3731 \pm 0.0124(\text{stat}) \pm 0.0152(\text{syst})$
 - NEUT prediction: 0.39
- Asymmetry: $\frac{\sigma(\nu) \sigma(\overline{\nu})}{\sigma(\nu) + \sigma(\overline{\nu})}$
 - 0.4566 ± 0.0120 (stat) ± 0.0171 (syst)

T2K preliminary

Of note

- On-axis (INGRID)
 - CC-Inclusive on iron and hydrocarbon <u>PRD 90, 052010</u> (2014)
 - CCQE on hydrocarbon <u>PRD 91, 112002 (2015)</u>
- Off-axis (ND280)
 - CC-Inclusive on carbon <u>PRD 87, 092003 (2013)</u>
 - v_e CC-Inclusive on carbon <u>PRL 113, 241803 (2014)</u>
 - CCQE on carbon as function of E_v <u>PRD 92, 112003 (2015)</u>
 - Coherent π^+ on carbon <u>PRL 117, 192501 (2016)</u>

Summary

- T2K continues to produce new and important crosssection measurements
 - Recently published results include differential and double-differential cross sections on water and hydrocarbon
 - Recent preliminary results under preparation for publication
- Ongoing analyses
 - Full phase-space v_{μ} CC-Inclusive on hydrocarbon
 - CC-Inclusive on gaseous argon
 - CC0 π muon antineutrino on water

Thank you

Backups

The Tokai to Kamioka (T2K) Experiment

T2K Beamline

Protons on target (POT) totals up to Run 7 POT total: 1.51×10^{21} ν -mode: 7.57×10^{20} $\bar{\nu}$ -mode: 7.53×10^{20}

 $\times\, 10^{20}$

Run2

Run1

25

20

15

10

5

Accumulated POT

Beam Power (kW)

Total Accumulated POT for Physics

Run6

for antineutrino

Reverse horn current

Run7

Run8

500

400

300

200

100

Ω

2016

Dec/31

Run5

v-Mode Beam Power

 \overline{v} -Mode Beam Power

Run4

Run3

Off-axis Effect

- First exploited by T2K
- Energy of neutrinos from twobody π-decay, at angles relative to π momentum, is capped due to Lorentz boost
 - T2K has narrowband spectrum peaking at ~0.6 GeV at 2.5° off-axis

Off-axis ND

On-axis ND (INGRID)

280m

 Maximizes oscillation probability at far detector and reduces high-E backgrounds

decay volume

beam dump

muon monitor

118m

J-PARC

30GeV

proton beam

target & 3horns

On-axis Near Detector

(INGRID) ~10m 1.5m Beam center ~10m

D280

- 16 identical cubic modules arranged vertically and horizontally
 - Each standard module a sandwich of 10 iron and 11 scintillator planes
- 1 Proton Module at center of cross
 - Finer scintillator planes and no iron
- Centered on beam
 - Primary purpose beam monitoring
- Carbon (CH) and iron targets

Horn focusing

- Three magnetic horns
- Good data-taking periods +/- 250 kA
 - Identical current on all three

Antineutrino mode flux

ND pictures

Bayesian Unfolding

- Data observables measured imperfectly
- Would like a way to extract the *true* value of observable from the *reconstructed*
- One way is to construct a response matrix P(j|i)
- Bayes Theorem then gives the *unfolding matrix*
 - P(i|j) = P(j|i)P(i)/P(j)
 - Prior pdf is a choice; we use MC truth

•
$$N_i^{unf} = P(i|j)N_j^{meas}$$

Measurement of v_{μ} CCQE at INGRID

Measurement of v_{μ} CCQE at ND280

- Binned likelihood fit to observed p_{μ} -cos θ_{μ}
 - Parameterized in E_v
- Energy dependent cross section extracted

Flux integrated CCQE cross section: $\sigma = (0.83\pm0.12)E-38 \text{ cm}^2/\text{neutron}$