

Testing the Neutrino Mass Ordering with Multiple Years of IceCube/DeepCore

<u>Martin Leuermann</u>*, Ste Wren (for the IceCube Collaboration)

*III. Physikalisches Institut RWTH Aachen University

- IPA, May 2017 -

Bundesministerium für Bildung und Forschung

DFG Deutsche Forschungsgemeinschaft

The University of Manchester

Neutrino Mass Ordering what is it about and why should I care?

What is Neutrino Mass Ordering?

- Neutrinos are massive particles
- Masses are fundamental, unknown constants in SM
- NMO describes the ordering of these masses
- Only two possibilities remain: "Normal" or "Inverted"

... and why should I care about it?

- Neutrino masses still not understood in SM (Nobel prize 2015)
- Ordering has impact on many fields of physics (cosmology, double-beta decay, absolute masses, CP violation...)

> W. Winter, Lake Louise Winter Institute, Feb. 2017

 Many experiments (e.g. IceCube extension PINGU) aiming to measure NMO within next 5-10 years

Neutrino Mass Ordering what is it about and why should I care?

?

What is Neutrino Mass Ordering?

- Neutrinos are massive particles
- Masses are fundamental, unknown constants in SM
- NMO describes the ordering of these masses
- Only two possibilities remain: "Normal" or "Inverted"

... and why should I care about it?

Neutrin

Orderir (cosmo Where can we get such neutrinos from

to probe the NMO?

> W. Winter, Lake Louise Winter Institute, Feb. 2017

 Many experiments (e.g. IceCube extension PINGU) aiming to measure NMO within next 5-10 years

 $(m_{2})^{2}$

 $(m_2)^2$

Matter Effects as probe for the NMO

What does the ordering really change?

Two matter effects during propagation through Earth:

• Interactions with electrons in the Earth (MSW-Effekt):

- **Parametric enhancement** due to non-homogeneous matter distribution:
 - Earth's core and mantle differ in matter density by a factor of ~2
 - Resonance occurring from periodicity of matter profile

Oscillation pattern for atmospheric neutrinos (Normal Ordering):

Differences between NO and IO for (anti-)neutrinos:

The IceCube Neutrino Observatory. ... construction and setting of the experiment

The IceCube Detector

- At Geographic South Pole
- Construction completed in 2010
- ~ $1 km^3$ size neutrino detector
- 1.5 2.5 *km* depth
- 5160 DOMs at 86 strings
- Sees $E_{\nu} > 100 \ GeV$

The DeepCore Extension

- 8 additional strings
- 460 high-QE DOMs (+35%)
- Sees $E_{\nu} > 5 \ GeV$

DeepCore, on-top view / string locations

Flavor Separation in IceCube....

Two Event Topologies:

- Tracks and Cascades
- Physics behind tracks:
 - CC muon neutrinos
 - Atmospheric muons
- Physics behind Cascades:
 - CC electron /tau neutrinos
 - NC interactions
- Left: Cherenkov Photon propagation
- Easy to separate at >100GeV

Flavor Separation in IceCube....

Two Event Topologies:

- Tracks and Cascades
- Physics behind tracks:
 - CC muon neutrinos
 - Atmospheric muons
- Physics behind Cascades:
 - CC electron /tau neutrinos
 - NC interactions
- Left: Cherenkov Photon
 propagation
- Easy to separate at >100GeV

Flavor Separation in IceCube....

Separation at low energies:

- Only very little energy deposited in detector
- Weak separation power
- Separation of tracks and cascades statistical process
- Separation done using likelihood method testing track and cascade hypo.

So, what do we need to measure for NMO?

- 1) Neutrino Energy
- 2) Direction (zenith angle)
- 3) Flavor separator (PID)

need to reconstruct these 3 quantities at extreme low energies (<10GeV) (challenging energy regime for data selection and reconstruction)

Analysis Method: 3D LLH Analysis

- Separate flavors within fitted diagram
- Fit oscillations for all flavors simultaneously
- Multiple years, high statistics, low-E sample
- Optimize Likelihood function:

 $LLH = -\sum_{i=1}^{N_{bins}} \log \left(p \left(obs_i \mid pred_i \left(\theta_{jk}, \Delta m_l^2, NMO, \{p_k\} \right) \right) \right)$

Idea of Mass Ordering Measurement, ... with the IceCube/DeepCore detector

How do we do this analysis?

Perform 2 parallel analyses on IceCube/DeepCore ...

Analysis A (similar to std. oscillations)

- 3 years of IceCube/DeepCore data
- Event-containment and quality cuts
- Focuses on:
 - energy range 5-80GeV
 - upgoing events only
 - 2 PID bins (tracks and cascades)
 - coarse binning
- Expect ~9k events per year

Analysis B (high statistics, low energy tuned)

- 4 years of IceCube/DeepCore data
- Aiming to maximize statistics
- Focuses on:
 - energy range 4-90GeV
 - upgoing events only
 - 3 PID bins (+transition bin)
 - small, non-linear binning
- Expect ~22k events per year
- Focus on this in this talk!

Reconstructed Observables inserting the NMO Likelihood

Reconstructed Observables inserting the NMO Likelihood

 $\cos(\vartheta)$

Reconstructed Observables inserting the NMO Likelihood

What is the signature we expect in these 3D histograms?

shown for Analysis B in reconstructed variables

 $\log_{10}(E_{\nu}/GeV)$

Reconstructed Observables inserting the NMO Likelihood

Performance Estimation ... calculation of sensitivity and significance

Final experimental result - estimate significance from pseudo experiments:

fit NO and IO

Fast estimation of sensitivity based on NMO-specific χ^2 -method:

- Method proposed by: DOI: 10.1007/JHEP01(2014)095
- Uses $\chi^2 \approx \Delta LLH$ between several hypothesis:
 - Inject true hypothesis
 - Inject wrong hypothesis p fit NO and IO
- Results in estimate from 4 LLH values
- for each ordering for each estimate of sensitivity

$$\Sigma_{NH}[\sigma] = \frac{2 \cdot (\Delta LLH_{NH} - \Delta LLH_{NRH})}{2 \cdot \sqrt{2 \cdot \Delta LLH_{NRH}}}$$

$$\Sigma_{IH}[\sigma] = \frac{2 \cdot (\Delta LLH_{IRH} - \Delta LLH_{IH})}{2 \cdot \sqrt{2 \cdot \Delta LLH_{IRH}}}$$

Sensitivity of the 3 Observables inserting the oscillation LLH

How sensitive is DeepCore to NMO using multiple years of data?

Analysis A

Analysis B

regarding strong θ_{23} dependence of sensitivity

Systematic Influences understanding detector and physics

?

How are systematic uncertainties treated in these fits?

Systematic Uncertainties included in fit of signal parameters

- Parametrize impact of systematic uncertainty on 3D histogram:
 - Normalizations
 - Detector uncertainties
 - Oscillation parameters
 - Atmospheric flux uncertainties
 - Interaction uncertainties
- Fit all uncertainties simultaneously with fit of NMO
- Reduces significance for NMO by inclusion of systematics

Name:	Explanation:	
N_{μ}	Normalization of atmospheric muons	
N _e	Normalization of electron neutrinos	
N _{NC}	Normalization of NC interactions	
$L_{scatter}^{holeice}$	Scattering length in re-frozen ice	
ϵ_{PMTs}	Efficiency of photomultipliers	
Δm^2_{23}	Atmospheric neutrino mass difference	
θ_{23}	Atmospheric mixing parameter	
$\gamma_{ u}$	Neutrino energy spectrum uncertainty	
γ_{μ}	Muon energy spectrum uncertainty	
$\sigma_{ m v}^{zenith}$	Atmospheric zenith spectrum uncertainty	
ν - $\overline{\nu}$ -ratio	Neutrino-antineutrino ratio	
M_A^{res}	Resonant interaction uncertainty	
M_A^{qe}	Quasi-elastic interaction uncertainty	21

Systematic Influences understanding detector and physics

systematic effects included into NMO fit to data

bias arising off the ┓ true ystematic value Уd parameter is Sigma FIXED

Summary & Outlook

Summary

- NMO measurement is key goal of many future neutrino experiments (e.g. PINGU)
- Already currently running IceCube/DeepCore detector can explore this type of measurement
 - Extreme low-energy, ($E_{\nu} > 5 \ GeV$), high-statistics data samples
 - Challenging energy regime for data selection and reconstruction
 - Test NMO with 2 independent analyses with different focuses
- Stand-alone sensitivity of $\sim 0.3 0.7\sigma$ (depending on value of θ_{23})
- Explore this type of measurement for future PINGU extension

Outlook

- Experimental DeepCore result on NMO in near future
- Potential boost from inclusion of external oscillation measurements
- Also, sensitivity to testing matter effects vs. vacuum oscillations

from: http://www.capteurdereve.fr/

Summary & Outlook ... and a short discussion

Summary

- NMO measurement is key goal of many future neutrino experiments (e.g. PINGU)
- Already currently running IceCube/DeepCore detector can explore this type of measurement

Outlook

- Experimental DeepCore result on NMO in near future
- Potential boost from inclusion of external oscillation measurements
- Also, sensitivity to testing matter effects vs. vacuum oscillations

from: http://www.capteurdereve.fr/

BACKUP

BACKUP

Distribution of ...

- true energy
- true zenith

... as predicted by IceCube Monte Carlo

BACKUP

 $\cos(artheta^{
m reco})$

Neutrino Oscillations ... as probe for the NMO

Transition probability of neutrino: $P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sum_{k,j} U_{\alpha,k}^* U_{\beta,k} U_{\alpha,j} U_{\beta,j}^* \exp\left(-i\frac{\Delta m_{k,j}^2 L}{2E_{\nu}}\right)$

Described by PMNS-Matrix:

Many measurements on oscillation parameters:

				-		
Parameter	Hierarchy	Best fit	1σ range	2σ range	3σ range	
$\delta m^2 / 10^{-5} \mathrm{eV}^2$	NH or IH	7.37	7.21 - 7.54	7.07 – 7.73	6.93 – 7.97	
$\sin^2 \theta_{12} / 10^{-1}$	NH or IH	2.97	2.81 - 3.14	2.65 - 3.34	2.50 - 3.54	
$\Delta m^2 / 10^{-3} \text{ eV}^2$	NH	2.50	2.46 - 2.54	2.41 - 2.58	2.37 - 2.63	Still
$\Delta m^2 / 10^{-3} \text{ eV}^2$	IH	2.46	2.42 - 2.51	2.38 - 2.55	2.33 - 2.60	open
$\sin^2 \theta_{13} / 10^{-2}$	NH	2.14	2.05 2.25	1.95 – 2.36	1.85 - 2.46	open
$\sin^2 \theta_{13} / 10^{-2}$	IH	2.18	2.06 - 2.27	1.96 – 2.38	1.86 - 2.48	question
$\sin^2 \theta_{23} / 10^{-1}$	NH	4.37	4.17 - 4.70	3.97 – 5.63	3.79 – 6.16	
$\sin^2 \theta_{23} / 10^{-1}$	IH	5.69	$4.28 - 4.91 \oplus 5.18 - 5.97$	4.04 - 6.18	3.83 - 6.37	
δ/π	NH	1.35	1.13 – 1.64	0.92 – 1.99	0-2	
δ/π	IH	1.32	1.07 - 1.67	0.83 – 1.99	0 - 2	
$\Delta \chi^2_{\rm I-N}$	IH–NH	+0.98				

(from: Nuclear Physics B 908 (2016) 199–217)

Neutrino Oscillations ... as probe for the NMO

Described by PMNS-Matrix:

Many measurements on oscillation parameters:

Parameter	Hierarchy	Best fit	1σ range	2σ range	3σ range			
2	Where can we get such neutrinos from to probe the NMO?							
$\sin^2 \theta_{23} / 10^{-1}$	IH	5.69	4.28 - 4.91 + 5.18 - 5.97	4.04 - 6.18	3.83 - 6.37			
δ/π	NH	1.35	1.13 – 1.64	0.92 - 1.99	0-2			
δ/π	IH	1.32	1.07 - 1.67	0.83 – 1.99	0 - 2			
$\Delta \chi^2_{\rm I-N}$	IH–NH	+0.98						

(from: Nuclear Physics B 908 (2016) 199–217)

ICECUBE

Atmospheric Neutrinos... ... as a source for neutrino oscillation measurements

