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SN	1987A:	Our	Rosetta	Stone	

IMB

KamII

Observation: Type	II	supernova	
progenitors	are	massive	stars

Observation: The	neutrino	
precursor	is	very	energetic

Theory: Core	collapse	makes	a	proto-neutron	star	and	neutrinos
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What	Does	This	Leave	Unknown?
Total	energy	emitted	in	neutrinos?
Partition	between	flavors?
Emission	in	other	particles?
Spectrum	of	neutrinos?
Neutrino	mixing	effects?

!
Supernova	explosion	mechanism?
Nucleosynthesis yields?
Neutron	star	or	black	hole?
Electromagnetic	counterpart?
Gravitational	wave	counterpart?

!
and	much	more!
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Plan	of	the	Talk

Introduction:	Three	detection	modes

Revolutionizing	MeV	neutrino	astronomy

Milky	Way	burst

Nearby	galaxy	mini-burst

Diffuse	Supernova	Neutrino	Background

Concluding	perspectives

✔
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Introduction:	Three	Detection	Modes
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Basic	Features	of	MeV	Neutrino	Detection

Detectors	must	be	massive:
Effectiveness	depends	on	volume,	not	area

Detectors	must	be	quiet:
Need	low	natural	and	induced	radioactivities

�̄e + p ! e+ + n

Example	signals:

⌫ + e� ! ⌫ + e�

A(Z,N) ! A(Z + 1, N � 1) + e� + ⌫̄e

Example	background:
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Distance	Scales	and	Detection	Strategies

N	<<	1	:	DSNBN	>>	1	:	Burst N	~ 1	:	Mini-Burst

Rate	~ 0.01/yr

high	statistics,
all	flavors

Rate	~ 1/yr

object	identity,
burst	variety

Rate	~ 108/yr

cosmic	rate,
average	emission
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Simple	Estimate:	Milky	Way	Burst	Yields
Super-Kamiokande (32	kton water)
~	104 inverse	beta	decay	on	free	protons
~	102 - 103 CC	and	NC	with	oxygen	nuclei
~	102 neutrino-electron	elastic	scattering	(crude	directionality)

KamLAND,	MiniBooNE,	Borexino, SNO+,	etc	(~	1	kton oil)
~	102 inverse	beta	decay	on	free	protons
~	102 neutron-proton	elastic	scattering
~	10	- 102 CC	and	NC	with	carbon	nuclei
~	10	neutrino-electron	elastic	scattering

IceCube (106 kton water)
Burst	is	significant	increase	over	background	rate
Possibility	of	precise	timing	information

Much	larger	or	better	detectors	are	being	proposed	now
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Simple	Estimate:	Extragalactic	Mini-Burst	Yields

A	5000-kton	detector
could	see	mini-bursts
from	galaxies	within
several	Mpc,	where
the	supernova	rate
is above	one	per	year

New	considerations
for	such	a	detector	as	a	
dense	infill	for	IceCube!

Kistler,	Ando,	Yuksel,	Beacom,	Suzuki	(2011);
builds	on	Yoichiro Suzuki’s	ideas	for	Deep-TITAND

Yield	in	Super-Kamiokande ~ 1	(Mpc/D)^2
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Simple	Estimate:	DSNB	Event	Rate


dN�

dt

�

DSNB

⇠

dN�

dt

�

87A

⇥
NSN Mdet

4⇥D2

⇤
DSNB⇥

NSN Mdet
4⇥D2

⇤
87A

Kamiokande-II	rate	in	a	
special 10	second	interval

Super-Kamiokande rate	in	
every 10	second	interval

For	the	DSNB	relative	to	SN	1987A:
NSN up	by	~ 100														Mdet up	by	~ 10												1/D2 down	by	~ 10-10

DSNB	event	rate	in	Super-Kamiokande is	a	few	per	year

~ 1	s-1

*
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Revolutionizing	MeV	neutrino	astronomy
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First:	Get	Multi-kton-Scale	Neutrino	Detectors
Super-K JUNO DUNE

32	kton water
Japan
running

20	kton oil
China
building

34	kton liquid	argon
United	States
proposing

Excellent	prospects	for	coverage	of	all	neutrino	flavors
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Second:	Enable	Super-K	Selection	of	Nuebar

�̄e + p ! e+ + n

Neutron	capture	on	protons
Gamma-ray	energy	2.2	MeV
Hard	to	detect	in	SK

Neutron	capture	on	gadolinium
Gamma-ray	energy	~ 8	MeV
Easily	detectable	coincidence
separated	by	~ 4	cm	and	~ 20	µs

The	signal	reaction	produces	a	neutron,	but	most	backgrounds	do	not

Beacom	and	Vagins (2004):	First	proposal	to	use	dissolved	gadolinium	in	
large	light	water	detectors	showing	it	could	be	practical	and	effective	
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many nucleons of 16O significantly deviate - by about a
factor of four - from predictions.
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Fate	of	the	GADZOOKS!	Proposal

Super-K	2015:	Yes

For	about	10	years:
Vagins and	colleagues	developed	experimental	aspects
Beacom	and	colleagues	developed	theoretical	aspects

Will	greatly	increase	sensitivity	for	many	studies
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detector	backgrounds

Super-K	is	already	adopting	Li-Beacom techniques
Expect	to	reduce	backgrounds	in	all	MeV	detectors	by	~ 10	

Third:	Remove	Spallation	Backgrounds	
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Localizing	Spallation	Production

Li	and	Beacom	2015a,b

Almost	all	isotopes	are	produced	in	individual	showers
These	showers	can	be	localized	by	their	Cherenkov	light
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Milky	Way	Burst
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The	Flavor	Problem
Need	all	flavors	to	measure	the	total	emitted	energy

Need	all	flavors	to	test	effects	of	neutrino	mixing

⌫̄e Precise	(~ 104 events	in	Super-K)

⌫µ, ⌫⌧ , ⌫̄µ, ⌫̄⌧ Inadequate (~ 102 events	in	oil)

⌫e Inadequate (~ 102 events	in	Super-K)

How	will	we	ensure	complete	flavor	coverage?
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Focus	on	Measuring	Nue
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?	?

~ 102 events ~ 102 events ~ 103 events

Laha and	Beacom	2014Laha and	Beacom	2013

DUNE	uncertain	due	to	cross	section,	detector	response
Need	better	understanding	of	neutrino+nucleus!
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The	Waiting	Problem

Will	we	be	ready	to	detect	a	Milky	Way	supernova?
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All-Sky	Optical	Monitoring	to	Leverage

Discovering	and	monitoring	optical	transients	to	17th mag.
See	also	Adams,	Kochanek,	Beacom,	Vagins,	Stanek (2013)

Connection	to	astronomy	crucial,	but	optical	data	are	lacking
Enter	OSU’s	“Assassin”	(All-Sky	Automated	Survey	for	SN)

Dominating	discovery	rate	of	
supernovae	in	nearby	universe	
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The	Aftermath
What	are	the	conditions	in	the	proto-neutron	star?

Horowitz	et	al.	(2017) Li,	Beacom,	Roberts	(in	prep.)
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Nearby	Galaxy	Mini-Burst
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The	Variations
What	are	the	properties	of	core	collapse	in	extremes?
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Idea	from	Ando,	Beacom,	Yuksel (2005) Nakazato and	collaborators
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The	Verifications
What	are	the	varieties	and	rates	of	transients?
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Horiuchi et	al.	(2013)

Neutrino	bright,	optically	bright:
Core-collapse	supernova

Neutrino	bright,	optically	dim:
Core-collapse	to	black	hole

Neutrino	dim,	optically	bright:
Type	Ia supernova
Supernova	impostor

Neutrino	dim,	optically	dim:
All	the	time!
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Diffuse	Supernova	Neutrino	Background
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What	Does	Burst	Detection	Leave	Unknown?

Average	neutrino	emission?
Variation	between	supernovae?
Surprise	propagation	effects?

!
Supernova	rate	of	the	universe?
Black	hole	formation	probability?
Surprise	sources?

!
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Theoretical	Framework

dNe

dEe
(Ee) = Np �(E�)

Z 1

0

h
(1 + z) ⇥[E�(1 + z)]

i h
RSN (z)

i ����
c dt

dz

���� dz
�

Signal	rate	spectrum in	detector	in	terms	of	measured	energy

First	ingredient:	Neutrino	spectrum
(this	is	now	the	unknown)

Second	ingredient:	Core-collapse	
rate (formerly	very	uncertain,	but	
now	known	with	good	precision)

Third	ingredient:	Detector	Capabilities
(well	understood)

See	my	2010	article	in	Annual	Reviews	of	Nuclear	and	Particle	Science
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Measured	Spectrum	Including	Backgrounds
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Amazing	background	rejection:	
nothing	but	neutrinos	despite	
huge	ambient	backgrounds

Amazing	sensitivity:	factor	
~ 100	over	Kamiokande-II	limit	
and	first	in	realistic	DSNB	range

No	terrible	surprises

Challenges:	Decrease	
backgrounds	and	energy	
threshold	and	increase
efficiency	and	particle	ID
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Benefits	of	Neutron	Tagging	for	DSNB
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GADZOOKS!

Beacom,	Vagins (2004)

Solar	neutrinos:
eliminated

Spallation daughter	decays:
essentially	eliminated

Reactor	neutrinos:
now	a	visible	signal

Atmospheric	neutrinos:
significantly	reduced

DSNB:
More	signal,	less	background!

(DSNB	predictions	now	at	upper	edge	of	band)
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Super-K	With	Gd Can	Detect	the	DSNB
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Success	in	Super-K	would	motivate	case	for	Hyper-K	with	Gd
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Concluding	Perspectives
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N	<<	1	:	DSNBN	>>	1	:	Burst N	~ 1	:	Mini-Burst

Rate	~ 0.01/yr

high	statistics,
all	flavors

Rate	~ 1/yr

object	identity,
burst	variety

Rate	~ 108/yr

cosmic	rate,
average	emission

The	Time	for	Supernova	Neutrinos	is	Now
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The	Time	for	Neutrino	Astronomy	is	Now

Neutrino	Astronomy

MeV—GeV	n

Efforts:
HK	and	more

Targets:
Solar,	SN,	more
Surprises

TeV—PeV n

Efforts:
IceCube and	more

Targets:
GRBs,	AGN,	more
Surprises

EeV—ZeV n

Efforts:
ANITA	and	more

Targets:
GZK	process
Surprises

Neutrino	astronomy	must	be	broad
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The	Time	for	Neutrino	Science	is	Now

Neutrino	Science

Laboratory	n

Efforts:
Fermilab and	more

Context:
Precision	Physics,
BSM	reach

Cosmology n

Efforts:
CMB	and	more

Context:
Precision	Cosmology,
BSM	reach

Astronomy	n

Efforts:
IceCube and	more

Context:
Transient	Astronomy,
Multi-messenger

Neutrinos	are	multi-frontier	science
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TeVPA 2017

tevpa2017.osu.edu

I August 7–11, Columbus, OH

I Registration and abstract
submission are open

I Pre-meeting mini-workshops
on Sunday, August 7


