Neutrinos From Supernovae John Beacom, The Ohio State University

The Ohio State University's Center for Cosmology and AstroParticle Physics

SN 1987A: Our Rosetta Stone

Theory: Core collapse makes a proto-neutron star and neutrinos

What Does This Leave Unknown?

Total energy emitted in neutrinos? Partition between flavors? Emission in other particles? Spectrum of neutrinos? Neutrino mixing effects?

Supernova explosion mechanism? Nucleosynthesis yields? Neutron star or black hole? Electromagnetic counterpart? Gravitational wave counterpart?

and much more!

Plan of the Talk

Introduction: Three detection modes

Revolutionizing MeV neutrino astronomy

Milky Way burst

Nearby galaxy mini-burst

Diffuse Supernova Neutrino Background

Concluding perspectives

Introduction: Three Detection Modes

Basic Features of MeV Neutrino Detection

Detectors must be massive: Effectiveness depends on volume, not area

Example signals:

$$\nu + e^- \rightarrow \nu + e^-$$

$$\bar{\nu}_e + p \to e^+ + n$$

Detectors must be quiet:

Need low natural and induced radioactivities

Example background:

$$A(Z, N) \to A(Z+1, N-1) + e^- + \bar{\nu}_e$$

Distance Scales and Detection Strategies

high statistics, object identity, all flavors burst variety

Rate $\sim 10^8/yr$

cosmic rate, average emission

IceCube Particle Astrophysics, Madison, May 2017

Simple Estimate: Milky Way Burst Yields

Super-Kamiokande (32 kton water)

- ~ 10⁴ inverse beta decay on free protons
- $\sim 10^2$ 10^3 CC and NC with oxygen nuclei
- ~ 10² neutrino-electron elastic scattering (crude directionality)

KamLAND, MiniBooNE, Borexino, SNO+, etc (~1 kton oil)

- $\sim 10^2$ inverse beta decay on free protons
- ~ 10² neutron-proton elastic scattering
- $\sim 10 10^2$ CC and NC with carbon nuclei
- ~ 10 neutrino-electron elastic scattering

IceCube (10⁶ kton water)

Burst is significant increase over background rate Possibility of precise timing information

Much larger or better detectors are being proposed now

Simple Estimate: Extragalactic Mini-Burst Yields

Yield in Super-Kamiokande ~ 1 (Mpc/D)^2

A 5000-kton detector could see mini-bursts from galaxies within several Mpc, where the supernova rate is above one per year

New considerations for such a detector as a dense infill for IceCube!

Kistler, Ando, Yuksel, Beacom, Suzuki (2011); builds on Yoichiro Suzuki's ideas for Deep-TITAND

Simple Estimate: DSNB Event Rate

DSNB event rate in Super-Kamiokande is a few per year

Revolutionizing MeV neutrino astronomy

First: Get Multi-kton-Scale Neutrino DetectorsSuper-KJUNODUNE

32 kton water Japan *running* 20 kton oil China *building*

34 kton liquid argon United States proposing

Excellent prospects for coverage of all neutrino flavors

Second: Enable Super-K Selection of Nuebar

The signal reaction produces a neutron, but most backgrounds do not

Beacom and Vagins (2004): First proposal to use dissolved gadolinium in large light water detectors showing it could be practical and effective

Neutron capture on protons Gamma-ray energy 2.2 MeV Hard to detect in SK

Neutron capture on gadolinium Gamma-ray energy ~ 8 MeV Easily detectable coincidence separated by ~ 4 cm and ~ 20 μs

Fate of the GADZOOKS! Proposal

For about 10 years:

Vagins and colleagues developed experimental aspects Beacom and colleagues developed theoretical aspects

Super-K 2015: Yes

[41] Ref. [4] proposed adding a 0.2% gadolinium solution into the SK water. After exhaustive studies, on June 27, 2015, the SK Collaboration formally approved the concept, officially initiating the SuperK-Gd project, which will enhance anti-neutrino detectability (along with other physics capabilities) by dissolving 0.2% gadolinium sulfate by mass in the SK water.

Will greatly increase sensitivity for many studies

Third: Remove Spallation Backgrounds

Super-K is already adopting Li-Beacom techniques Expect to reduce backgrounds in all MeV detectors by ~ 10

Localizing Spallation Production

Li and Beacom 2015a,b

Almost all isotopes are produced in individual showers These showers can be localized by their Cherenkov light

Milky Way Burst

The Flavor Problem

Need all flavors to measure the total emitted energy Need all flavors to test effects of neutrino mixing

 $\overline{\nu}_e$ Precise (~ 10⁴ events in Super-K)

 $u_{\mu},
u_{ au}, ar{
u}_{\mu}, ar{
u}_{ au}, ar{
u}_{ au}$ Inadequate (~ 10² events in oil)

 ν_e Inadequate (~ 10² events in Super-K)

How will we ensure complete flavor coverage?

Focus on Measuring Nue

DUNE uncertain due to *cross section*, detector response Need better understanding of neutrino+nucleus!

The Waiting Problem

Will we be ready to detect a Milky Way supernova?

John Beacom, The Ohio State University

IceCube Particle Astrophysics, Madison, May 2017

All-Sky Optical Monitoring to Leverage

Connection to astronomy crucial, but optical data are lacking Enter OSU's "Assassin" (All-Sky Automated Survey for SN)

Discovering and monitoring optical transients to 17th mag. See also Adams, Kochanek, Beacom, Vagins, Stanek (2013)

The Aftermath

What are the conditions in the proto-neutron star?

Nearby Galaxy Mini-Burst

The Variations

What are the properties of core collapse in extremes?

The Verifications

What are the varieties and rates of transients?

Neutrino bright, optically bright: Core-collapse supernova

Neutrino bright, optically dim: Core-collapse to black hole

Neutrino dim, optically bright: Type la supernova Supernova impostor

Neutrino dim, optically dim: All the time!

Diffuse Supernova Neutrino Background

What Does Burst Detection Leave Unknown?

Average neutrino emission? Variation between supernovae? Surprise propagation effects? ... Supernova rate of the universe? Black hole formation probability? Surprise sources?

Theoretical Framework

- Signal rate spectrum in detector in terms of measured energy

$$\frac{dN_e}{dE_e}(E_e) = N_p \,\sigma(E_\nu) \,\int_0^\infty \left[(1+z) \,\varphi[E_\nu(1+z)] \right] \left[R_{SN}(z) \right] \left[\left| \frac{c \, dt}{dz} \right| dz \right]$$

Third ingredient: Detector Capabilities (well understood)

Second ingredient: Core-collapse rate (formerly very uncertain, but now known with good precision)

First ingredient: Neutrino spectrum (this is now the unknown)

See my 2010 article in Annual Reviews of Nuclear and Particle Science

Measured Spectrum Including Backgrounds

Malek et al. [Super-Kamiokande] (2003); energy units changed in Beacom (2011) – use with care Amazing background rejection: nothing but neutrinos despite huge ambient backgrounds

Amazing sensitivity: factor ~ 100 over Kamiokande-II limit and first in realistic DSNB range

No terrible surprises

Challenges: *Decrease* backgrounds and energy threshold and *increase* efficiency and particle ID

Benefits of Neutron Tagging for DSNB

Solar neutrinos: eliminated

Spallation daughter decays: essentially eliminated

Reactor neutrinos: now a visible signal

Atmospheric neutrinos: significantly reduced

DSNB: More signal, less background!

(DSNB predictions now at upper edge of band)

Super-K With Gd Can Detect the DSNB

Horiuchi, Beacom, Dwek (2009)

Success in Super-K would motivate case for Hyper-K with Gd

Concluding Perspectives

The Time for Supernova Neutrinos is Now

high statistics, object identity, all flavors burst variety

Rate $\sim 10^8/yr$

cosmic rate, average emission

The Time for Neutrino Astronomy is Now

Neutrino Astronomy

MeV—GeV
$$\nu$$

Targets: Solar, SN, more Surprises

TeV—PeV
$$\nu$$

EeV—ZeV
$$\nu$$

Efforts: IceCube and more Efforts: ANITA and more

Targets: GRBs, AGN, more Surprises Targets: GZK process Surprises

Neutrino astronomy must be broad

Context: Precision Physics, BSM reach Context: Precision Cosmology, BSM reach Context: Transient Astronomy, Multi-messenger

Neutrinos are multi-frontier science

Mauricio Bustamante (co-chair) Tim Linden (co-chair) Annika Peter

INTERNATIONAL ADVISORY COMMITTEE

Felix Aharonian (MPI Heidelberg) Gian Giudice (CERN) Laura Baudis (U. Zurich) John Beacom (OSU) Lars Bergström (Stockholm U.) **Gianfranco** Bertone (GRAPPA) Elliott Bloom (Stanford) Marco Cirelli (LPTHE, Paris) Joakim Edsiö (Stockholm U.) Jonathan Feng (UCI)

INVITED SPEAKERS Nima Arkani-Hamed (IAS Princeton) Sunil Gupta (TIFR) Julia Becker Tjus (Ruhr U. Bochum) Francis Halzen (WIPAC) Veronica Bindi (U. Hawaii at Manoa) Dan Hooper (Fermilab) Jo Bovy (U. Toronto) Olga Mena (IFIC) Ralph Engel (KIT) Subir Sarkar (Oxford, NBI) Tim Tait (UCI) Masahiro Teshima (ICRR)

Zhang XinMin (IHEP)

THE OHIO STATE UNIVERSITY

CENTER FOR COSMOLOGY AND ASTROPARTICLE PHYSICS

Gianluca Gregori (U. of Oxford) Francis Halzen (U. of Wisconsin, Madison) Tracy Slatyer (MIT) Fiona Harrison (Caltech) Xiangdong Ji (Shanghai Jiao Tong U.) Marc Kamionkowski (Johns Hopkins U.)

Victoria Kaspi (McGill U.) Marek Kowalski (DESY) Mariangela Lisanti (Princeton U.) Miguel Mostafá (Penn State U.) Hitoshi Murayama (UC Berkeley)* Samaya Nissanke (Radboud U.) Todd Thompson (Ohio State U.)* Abigail Vieregg (U. of Chicago) * = To be confirmed

https://tevpa2017.osu.edu/

TeVPA 2017

tevpa2017.osu.edu

- August 7–11, Columbus, OH
- **Registration and abstract** submission are open
- Pre-meeting mini-workshops on Sunday, August 7