Cosmic-Ray Reservoirs as Non-Thermal Neutrino Sources

Kohta Murase (Penn State)

PENNSTATE

IPA 2017: May 10 @ WI-Madison

New Mystery in Particle Astrophysics

Origins and mechanism of cosmic neutrinos?

-pp or p γ ? -connection to UHECRs? -connection to γ rays? – new physics?

(supported by sub-PeV diffuse γ-ray searches)

Cosmic-ray Accelerators (ex. UHECR candidate sources)

- <u>γ-ray bursts</u>

ex. Waxman & Bahcall 97, KM et al. 06 after Neutrino 2012: Cholis & Hooper 13, Liu & Wang 13 KM & Ioka 13, Winter 13, Bustamante+ 14 Senno, KM & Meszaros 16

- Active galactic nuclei

ex. Stecker et al. 91, Mannheim 95 after Neutrino 2012: Kalashev, Kusenko & Essey 13, Stecker 13, KM, Inoue & Dermer 14, Dermer, KM & Inoue 14, Tavecchio et al. 14, Kimura, KM & Toma 15, Padvani et al. 15, Wang & Li 16, Hooper 16

Cosmic-ray Reservoirs

- Starburst galaxies (not Milky-Way-like)

ex. Loeb & Waxman 06, Thompson et al. 07 after Neutrino 2012: KM, Ahlers & Lacki 13, Katz et al. 13, Liu et al. 14, Tamborra, Ando & KM 14, Anchordoqui et al. 14, Senno et al. 15, Xiao+ 16

- Galaxy groups/clusters

ex. Berezinsky et al. 97, KM et al. 08, Kotera et al. 09 after Neutrino 2012: KM, Ahlers & Lacki 13, Zandanel+ 14 Fang & Olinto 16, Fang & KM 17

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

Cosmic-ray Accelerators (ex. UHECR candidate sources)

 $E^2 \Phi$

obs. photon spectra

0.1/TeV

PeV

& source size

Cosmic-ray Reservoirs

 $E_v \sim 0.04 E_p$: PeV neutrino $\Leftrightarrow 20-30$ PeV CR nucleon energy

CR

s_v≠s_{cr}

E,

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

E_v ~ 0.04 E_p: PeV neutrino ⇔ 20-30 PeV CR nucleon energy

Cosmic-ray Reservoirs

Cosmic-ray Accelerators (ex. UHECR candidate sources)

 $E_v \sim 0.04 E_p$: PeV neutrino $\Leftrightarrow 20-30$ PeV CR nucleon energy

Cosmic-Ray Reservoirs

Key Points of CR Reservoir Models

- Some contributions must exist: very natural (galaxies contain CRs & gamma rays are detected)
- 1. Expected before IceCube's discovery (a multi-PeV break/cutoff has been expected) (Loeb & Waxman 06, KM et al. 08 ApJ, Kotera, Allard, KM et al. 09)
- 2. "Unification" of multi-messengers is possible (KM, Ahlers & Lacki 13, Katz et al. 13, Dado & Dar 14, Giancinti+ 15, KM & Waxman 16)

Issue: tension w. Fermi gamma-ray limits? relevance of "medium-energy neutrino data" (KM, Guetta & Ahlers 1509.00805, Kistler 1511.01530, Bechtol+ 1511.00688)

Multi-Messenger Connection?

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the CR flux (theoretically expected)

Grand-unification of neutrinos, gamma rays & UHECRs?

"cosmic particle-convergence"

*cosmogenic v flux does not violate the latest EHE limit by IceCube

Starburst/Star-Forming Galaxies: Basics

High-surface density M82, NGC253: $\Sigma_g \sim 0.1 \text{ gcm}^{-2} \rightarrow n \sim 200 \text{ cm}^{-3}$ high-z gal.: $\Sigma_g \sim 0.1 \text{ g cm}^{-2} \rightarrow n \sim 10 \text{ cm}^{-3}$ submm gal. $\Sigma_a \sim 1 \text{ gcm}^{-2} \rightarrow n \sim 200 \text{ cm}^{-3}$

CR accelerators
 Supernovae, hypernovae, GRBs,
 Super-bubbles (multiple SNe)
 Galaxy mergers, AGN

SBG cosmic-ray luminosity density $Q_{\rm cr} \sim 8.5 \times 10^{44} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{\rm cr,-1} \rho_{\rm SFR,-3}$

(SFG cosmic-ray energy budget ~ Milky Way CR budget is ~10 times larger)

advection time (Gal. wind) $t_{\rm esc} \approx t_{\rm adv} \approx h/V_w \simeq 3.1 \ {\rm Myr} \ (h/{\rm kpc}) V_{w,7.5}^{-1}$

pp efficiency $f_{pp} \approx \kappa_p \sigma_{pp} nct_{esc} \simeq 1.1 \ \Sigma_{g,-1} V_{w,7.5}^{-1}(t_{esc}/t_{adv})$

 $E_{\nu}^{2} \Phi_{\nu_{i}} \sim 10^{-9} - 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Necessity of Super-Pevatrons

Our Galaxy's CR spectrum Knee at 3 PeV → neutrino knee at ~100 TeV

Normal supernovae (SNe) are not sufficient to explain >0.1 PeV data

Possible solutions

- 1. B fields amplified to ~ mG KM+ 13
- 2.Hypernovae (HNe) KM+ 13, Liu+ 14, Senno+ 15
- 3. Trans-relativistic supernovae gamma-ray bursts Dado & Dar 14, Wang+ 15
- 4. Type IIn/IIb supernovae
 - Zirakashvilli & Ptuskin 16
- 5. Super-bubbles
- 6. AGN disk-driven outflows Tamborra+ 14
- 7. Galaxy mergers Kashiyama & Meszaros 14

Galaxy Groups and Clusters: Basics

- Intracluster gas density (known)
 n~10⁻⁴ cm⁻³, a fewx10⁻² cm⁻³ (center)
 - CR accelerators AGN (~a few) "active" accretion shocks (massive clusters) galaxy/cluster mergers normal galaxies (~100-1000)

AGN jet luminosity density $Q_{\rm cr} \sim 3.2 \times 10^{46} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} L_{j,45} \rho_{{\rm GC},-5}$

cluster luminosity density $Q_{\rm cr} \sim 1.0 \times 10^{47} \ {\rm erg} \ {\rm Mpc}^{-3} \ {\rm yr}^{-1} \ \epsilon_{{\rm cr},-1} L_{{\rm ac},45.5} \rho_{{\rm GC},-5}$

pp efficiency $f_{pp} \approx \kappa_p \sigma_{pp} nct_{int} \simeq 0.76 \times 10^{-2} \ g\bar{n}_{-4} (t_{int}/2 \ \text{Gyr})$

$$E_{\nu}^{2}\Phi_{\nu_{i}} \sim 10^{-9} - 10^{-8} \,\mathrm{GeV \, cm^{-2} \, s^{-1} \, sr^{-1}}$$

Advantages & Disadvantages

- Maximum energy of CRs is expected to be high enough (which is not the case in normal/starburst galaxies)
- Gigantic! \rightarrow confining CRs is easy (E < eBR~10²¹ eV)

CR diffusion time $t_{\rm diff} \approx (r_{\rm vir}^2/6D) \simeq 1.6 \, {\rm Gyr} \, \varepsilon_{p,17}^{-1/3} B_{-6.5}^{1/3} (l_{\rm coh}/30 \, {\rm kpc})^{-2/3} M_{15}^{2/3}$

 $t_{\text{diff}} = t_{\text{inj}} \implies \varepsilon_{\nu}^{b} \approx 0.04 \varepsilon_{p}^{b} \simeq 2.0 \text{ PeV } B_{-6.5} (l_{\text{coh}}/30 \text{ kpc})^{-2} M_{15}^{2} (t_{\text{inj}}/2 \text{ Gyr})^{-3}$ v break

Issues

- γ-ray overshooting?
- "accretion shock" scenario already disfavored (neutrino, γ-ray & radio)

AGN Embedded in Galaxy Clusters/Groups

- AGN as "UHECR" accelerators
- confinement in cocoons & clusters
- Escaping CR nuclei may have s < 2

 $\log E[eV]$

Other Possibilities?

Radio galaxies

Becker et al. 14, Hooper 16

AGN outflows

AGN outflows w. starbursts (Tamborra, Ando & KM 14) Quasar outflows (Wang & Loeb 16)

- Leptonic vs hadronic
- Variablity? \rightarrow compact region?
- pp efficiency? \rightarrow compact region? $f_{pp} \simeq 1.2 \times 10^{-3} \ n_{-1} D_{0,27.5}^{-1} \varepsilon_{p,17}^{-1/3} (R/3 \text{ kpc})^2$ not inside jets (Atoyan & Dermer 01)
- Normalization of CR luminosity? kinetic luminosity vs thermal luminosity
- Column density?
- X-ray obs.: $N_{H} \sim 10^{20-24} \text{ cm}^{-2}$
- Model degeneracy?

Predictions of CR Reservoir Models and Issues

Strong predictions: spectral index s<2.1-2.2 >30-40% to the diffuse γ -ray bkg. (IGRB)

※ insensitive to redshift evolution and EBL models

Proposed tests: 1. (Stacking) searches for neutrinos & γ rays from nearby reservoirs
2. Decomposing the diffuse γ-ray bkg.

3. Measurements of neutrino data below 100 TeV

General Clustering Limits

Non-detection of multiplet sources give "upper" limits on the number density (Lipari 08, Silvestri & Barwick 10, KM, Beacom & Takami 12, Ahlers & Halzen 14, Kowarski 15)

Need to Identify the Sources: Stacking?

Cross-correlation - powerful but complete catalogues may not be available Starbursts and radio galaxies are detected by Fermi -> " $v-\gamma$ connection" For pp scenarios w. s<2.2, we have strong predictions for IceCube-Gen2

V=10 km3 & best ang. res.=0.1 deg & 5 yr obs. assumed

KM & Waxman 16

Beyond Waxman-Bahcall?: MESE "Excess" Problem

- Best-fit spectral indices tend to be as soft as s~2.5
- 10-100 TeV data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

- $pp \rightarrow \sim 100\%$ of IGRB even w. s~2.0
- minimal $p\gamma \rightarrow >50\%$ of IGRB (via EM cascades)

contrary to sub-threshold source & cross-corr. analyses

Indication of Gamma-Ray Dark Cosmic-Ray Accelerators

KM, Guetta & Ahlers 16 PRL

- $\gamma\gamma \rightarrow e^+e^-$: unavoidable in $p\gamma$ sources (ex. GRBs, AGN)
- v sources should naturally be obscured in GeV-TeV γ rays

AGN Cores as Hidden Neutrino Factories?

Seyfert/Quasar AGN

standard accretion disk -> collisional CR acceleration does not occur

Low-luminosity AGN

accretion disk is "radiatively inefficient" collisionless flow -> CR acceleration Non-thermal emission from Sgr A*, Cen A?

Choked Jets as Hidden Neutrino Factories?

Senno, KM & Meszaros 16 PRD

Lower-power jets are better for CR acc.

Neutrinos from LL GRBs -> X-ray coincidence **Neutrinos from SNe Ibc** -> optical follow-ups

Summary

CR reservoirs are promising multi-messenger sources

Nice features: theoretical predictions including a multi-PeV break UHECRs may be explained simultaneously Even the diffuse γ-ray bkg. can be explained (grand-unification) Strong predictions that can be tested (KM, Ahlers & Lacki 13)

1. s<2.1-2.2

- 2. >30% to the diffuse sub-TeV γ -ray bkg.
- 3. IACTs should observe them as hard γ -ray sources

Source identification is likely w. IceCube-Gen2 (stacking, event clustering)

Understanding the 10-100 TeV data is important

medium-energy excess: background? special Gal. sources? or new physics? pp scenarios: most models suffer from tensions w. the diffuse γ-ray bkg. pγ scenarios: hidden CR accelerators needed & tensions are naturally avoided X-ray/MeV γ-ray counterparts (ex. low-power GRBs/AGN) Are cosmic-ray connections just coincident?

Gamma-Ray Burst – Supernova Connection

Gamma-Ray Transients' Zoo

Choked Jets as "Hidden" Neutrino Sources

Neutrinos: smoking gun of rel. jets that cannot be directly seen by γ

- 1. Ballistic jets inside stars? \rightarrow collimation shock & collimated jet
- 2. Cosmic-ray acceleration? \rightarrow inefficient at radiation-mediated shocks

Limitation of Shock Acceleration

Collisionless shock

Radiation-mediated shock

(m.f.p.) ~ $r_L(\epsilon_p)$ < (shock width) suppressed CR acceleration

upstream

downstream

"Radiation Constraints" on Non-thermal Neutrino Production

Time & Energy Scales

Neutrinos from Interaction-Powered SNe

CSM eruption(s) before explosion

True SN explosion

CR acc. efficiency ~10% \rightarrow # of µs expected in IceCube ~a few events for SN@10Mpc

Multiplet Searches are Independently Powerful

Non-detection of point sources give "upper" limits on the number density For early papers, Lipari 08, Silvestri & Barwick 10, KM, Beacom & Takami 12

IceCube measurements fix the normalization

cluster accretion shock model: weak (even negative) evolution, n₀^{eff}~10⁻⁶ Mpc⁻³ cluster/group internal accelerator model: positive evolution, n₀^{eff}~10⁻⁵ Mpc⁻³

For discussion after IceCube's discovery, Ahlers & Halzen 14, Kowarski 15, KM & Waxman 16

Implications of Detailed Gamma-Ray Studies

Our conclusion has been confirmed by subsequent papers

shot-noise in diffuse γ -ray bkg.

cross corr. between galaxy catalogues

Given that IceCube's data above 100 TeV are explained... Decomposition of extragalactic γ -ray bkg. gives tighter limits: s<2.0-2.1 Insufficient room for pp scenarios to explain the 10-100 TeV neutrino data

py/yy Optical Depth Correspondence

- $\gamma\gamma \rightarrow e^+e^-$: unavoidable in py sources (ex. GRBs, AGN)
- Same target photons prevent γ-ray escape

30 TeV-3 PeV ν constrains 1-100 GeV γ

- Neutrino production efficiency f_{pγ} cannot be too small
 - 1. $f_{p\gamma} \ll$ 1 unnatural (requiring fine tuning), Do not overshoot the observed CR flux (Yoshida & Takami 14 PRD)
 - Comparison w. non-thermal energy budgets of known objects (galaxies, AGN, cluster shocks etc.)

Testing Galaxy Clusters w. Neutrinos

Good chances to see neutrinos if CR reservoir models are correct

Gamma-Ray Limits?

2.5

Fermi

pp Neutrinos from Cosmic-Ray Reservoirs

- v data are consistent w. pre-discovery calculations (within uncertainty)

- CR diffusive escape naturally makes a v spectral break (predicted)
- Uncertain (ex. how E_p^{max}>E_{knee}?) (

but models look simple and natural

Fate of Extragalactic Gamma Rays

First Multimessenger Constraints from "Measured" Fluxes

• $s_v < 2.1 - 2.2$ (for extragal.), $s_v < 2.0$ (Gal.) (cf. Milky Way: $s_v \sim 2.7$)

- contribution to diffuse sub-TeV γ: >30%(SFR evol.)-40% (no evol.)
- IceCube & Fermi data can be explained simultaneously

An Example of Calculation: Gamma-Ray Burst Jets

Classical Long Gamma-Ray Bursts (pγ)

numerical results w. detailed microphysics

- GRBs are special: stacking analyses
 duration (~10-100 s) & localization → atm. bkg. is practically negligible
- IC40+59 limits: <~ 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹ (and stronger w. IC79+86)
 → Classical GRBs are not the main origin of observed PeV neutrinos

Recent IceCube Limits on Prompt v Emission

GRB Early Afterglow Emission

•Most vs are radiated in ~0.1-1 hr (physically max[T, T_{dec}]) Afterglows are typically explained by external shock scenario •But flares and early afterglows may come from internal dissipation

- Flares efficient meson production ($f_{p\gamma} \sim 1-10$), maybe detectable External shock not easy to detect both vs and hadronic γ rays

Exceptions: Low-Power Gamma-Ray Burst Jets

 Low-luminosity (LL) & ultralong (UL) GRB jets are largely missed may explain IceCube v data without violating stacking limits
 Uncertain so far, but relevant to understand the fate of massive stars → Better (next-generation) wide-field sky monitors are required

0 0

Active Galactic Nuclei (AGN)

FR-II radio galaxy Flat spectrum radio quasar (FSRQ) Steep spectrum radio quasar (SSRQ)

 $f_{p\gamma} \approx \hat{n}_{\rm BL} \sigma_{p\gamma}^{\rm eff} r_{\rm BLR} \simeq 5.4 \times 10^{-2} L_{\rm AD,46.5}^{1/2} r_{\rm BLR} \approx 10^{17} \text{ cm } L_{\rm AD,45}^{1/2}$ **cf.** $f_{p\gamma} \approx \hat{n}_{\rm EBL} \sigma_{p\gamma}^{\rm eff} d \simeq 1.9 \times 10^{-4} \hat{n}_{\rm EBL,-4} d_{28.5}$

Blazar Sequence

KM, Inoue & Dermer 14

Blazars as Powerful EeV v Sources

- Quasar-hosted blazars: efficient v production, UHECR damped
- BL Lac objects: less efficient v production, UHE nuclei survive

- PeV-EeV v: py w. BLR & dust-torus photons \rightarrow unique shape

- Strong prediction: cross-corr. w. known <100 bright quasars
- UHECR norm. \rightarrow below WB but EeV v detectable by ARA

Contributions from Fermi Bubbles?

- consistent w. $\Gamma=2.2$ (while the cutoff is indicated by Fermi)
- testable w. future gamma-ray detectors (ex. CTA, HAWC)