# Evolution of the Reactor $\overline{\nu}_e$ Flux and Spectrum At Daya Bay

May 8, 2017





https://arxiv.org/abs/1704.01082

### **Reactor Antineutrino Production**



#### • Reactor $\overline{\nu}_e$ : produced in decay of product beta branches

• Each isotope: different branches, so different neutrino energies, fluxes



# The Reactor Antineutrino Anomaly



- Existing global deficit in measured  $\overline{\nu}_e$  flux at all baselines
- What's going on??? Is the anomaly real? What is the cause?
  - Many nuclear physicists: flux predictions might just be wrong!
  - Many particle physicists: no, maybe this is another hint for sterile neutrinos!
- More information needed to differentiate these two hypotheses



# Daya Bay Layout



- Original concept with 8 'identical' detectors:
  - Near detectors constrain flux
  - Far detectors see if any neutrinos have disappeared.
- Daya Bay has ideal specs for doing this



|              | Reactor [GW <sub>th</sub> ] | Target [tons] | Depth [m.w.e]        |
|--------------|-----------------------------|---------------|----------------------|
| Double Chooz | 8.6                         | 16 (2 × 8)    | 300, 120 (far, near) |
| RENO         | 16.5                        | 32 (2 × 16)   | 450, 120             |
| Daya Bay     | 17.4                        | 160 (8 × 20)  | 860, 250             |
|              | Large Signal                |               | Low Background       |

# Daya Bay Antineutrino Detectors (ADs)

- Detect inverse beta decay (IBD) with liquid scintillator, PMTs
  - IBD e+ is direct proxy for antineutrino energy



Daya Bay Detector



# Reactor Antineutrino Detection: Daya Bay



#### Detect inverse beta decay (IBD) with liquid scintillator, PMTs



#### 400-800 detected IBD per day per Near Site detector





- Previous Daya Bay analyses:
- STEP I: Integrate all IBD over all times
- STEP 2a: Compare IBD rate/spectrum between Near, Far
- STEP 2b: Compare IBD rate/spectrum to theoretical models





### Daya Bay Evolution Analysis

- <u>DO NOT</u> time integrate: instead, look at reactors' fission fractions
  - % of fissions from <sup>235</sup>U <sup>239</sup>Pu, <sup>238</sup>U, <sup>241</sup>Pu
- Calculate 'effective fission fraction,' observed by each detector:

 $W_{\mathrm{th},r}(t)\overline{p}_r$ 

Weight core fission fraction by power, baseline, oscillation, etc.

 $\frac{W_{\mathrm{th},r}(t)\bar{p}_r f_{i,r}(t)}{L^2 \overline{E}_r(t)}$ 

 $F_i(t) =$ 





## Daya Bay Evolution Analysis

- <u>DO NOT</u> time integrate: instead, look at reactors' fission fractions
  - % of fissions from <sup>235</sup>U <sup>239</sup>Pu, <sup>238</sup>U, <sup>241</sup>Pu
- Calculate 'effective fission fraction,' observed by each detector:

 ${\bf V}_{{
m th},r}(t)\overline{p}_r$ 

- Weight core fission fraction by power, baseline, oscillation, etc.
- Calculate IBD rate (per fission) for each bin in effective fission fraction.

 $\frac{W_{\text{th},r}(t)\bar{p}_r f_{i,r}(t)}{L^2 \overline{E}_r(t)}$ 

 $F_i(t) = \sum_{i=1}^{n}$ 



### **Result: Flux Evolution**



- When plotting IBD/fission versus  $F_{239}$ , we see a slope in data
- Very clear that flux is changing with changing fission fraction.
- Not too surprising; models predict  $^{239}\text{Pu}$  makes fewer  $\overline{\nu}_e$ 
  - Seen before in previous experiments: Rovno (90's); SONGS (00's)
- Surprising: measured, predicted slope do not agree at  $2.6\sigma$



# **Result: Flux Evolution**



- Also consider: total flux prediction is too high by 5.4%
- Suggests that <sup>235</sup>U prediction, in particular, is too high
  - Some more complicated scenarios still allowed, i.e.: <sup>239</sup>Pu UP + sterile nu
  - Editorial opinion: The whole reason we introduced sterile neutrinos to this picture was to avoid having to admit the models were wrong. Hmmmm...



#### 2

# Result: Fits to Individual Isotopes

- Use this data to explicitly fit IBD/fission for <sup>235</sup>U, <sup>239</sup>Pu
  - Assume loose (10%) uncertainties on sub-dominant <sup>238</sup>U, <sup>241</sup>Pu
- As expected, fitted <sup>235</sup>U is lower than the model
  - <sup>239</sup>Pu matches model well.
- Note: CLs are significant, but not overwhelming
  - With more statistics, better systematics, there is a chance these results could shift.
  - Future DYB measurements would be valuable!





# **Result: Spectrum Evolution**



- Shift gears: what if we add IBD energy into the mix?
  - Examine evolution in 4 separate energy ranges
- Slope is different for different energy ranges
- Put another way: IBD spectrum changes w/ F<sub>239</sub>
  - This is the first unambiguous measurement of this behavior
- Matches models ~well; more statistics needed to address 'spectrum anomaly'



# Future Prospects



- Daya Bay will improve its statistically limited measurement
  - Improved nH + nGd IBD analysis: ~1.6x more statistics
  - ~3.5 years of data down; 4.5 years of data to go!

2015

2016

EH2



 Highly-enriched uranium cores provide a chance to sample wider fission fraction ranges (100% <sup>235</sup>U)

2014

Year

0

2013

EH1

0.36

0.32

0.24

0.20

2012

ူး ရှိ 0.28

 Precise flux measurements at new short-baseline experiments (like PROSPECT) could be helpful





#### Thanks!

#### Questions?

# Spectrum Evolution: Data-Model Comparison

- 4-6 MeV region: no strange behavior visible WRT models
  - No major indication that 'bump' data-model discrepancy comes from a particular isotope.
  - Data-model offset seems (maybe?) a little bit reduced, but more statistics are required to say something meaningful.



# Note: From IBD/day to IBD/fission



- IBD/day depends on many time-variable quantities:
  - Reactor status and thermal power
  - Power released per fission
  - Detector livetime
  - Some other more minor, nearly-constant stuff target mass
- Show final plots in terms of IBD/fission:  $\sigma_f$

$$\sigma_f = \sum_i F_i \sigma_i$$

Basically take IBD/day and divide out all these variable quantities on a week-by-week basis



#### Systematics: Reactor



- Uncertainties from various inputs to our F<sub>i</sub> definition are not too large
  - Reactor power small (0.5%), ~ constant in time, reactor-uncorrelated
  - reactor fission fraction sizable (5% relative); constant in time, reacor-correlated
  - energy per fission very small, time-constant
  - oscillations, baselines: very small, time-constant ;)
  - We can get into nitty gritty details in backup slides if people want...
- Statistics dominate this uncertainty



### Cancellation Between Cores?



- Reactor cores' cycles are not aligned (that would be dumb!!)
- Q: Isn't there some cancellation of fission fraction variation?



# A: Yes, BUT it's not complete (phew!)





#### Systematics: Detector



- Major consideration: how does a detector change over time?
  - Reconstructed energy scales are <u>**extremely</u>** time-stable (<0.1% variation)</u>
  - Most inefficient IBD cuts are energy-based: also time-stable (<0.1% variation)
- Statistics <u>REALLY</u> dominate this uncertainty
  - Absolute detection efficiency is also important, as we will see in a bit.



### Global Fits: Input Data



| a         | Experiment       | $f^a_{235}$ | $f^{a}_{238}$ | $f^{a}_{239}$ | $f^a_{241}$ | $R_{a,\mathrm{SH}}^{\mathrm{exp}}$ | $\sigma_a^{\rm exp}~[\%]$ | $\sigma_a^{ m cor}$ [%] | $L_a$ [m]      |
|-----------|------------------|-------------|---------------|---------------|-------------|------------------------------------|---------------------------|-------------------------|----------------|
| 1         | Bugey-4          | 0.538       | 0.078         | 0.328         | 0.056       | 0.932                              | 1.4                       | $\int_{1}$              | 15             |
| <b>2</b>  | Rovno91          | 0.606       | 0.074         | 0.277         | 0.043       | 0.930                              | 2.8                       | $\int^{1.4}$            | 18             |
| 3         | Rovno88-1I       | 0.607       | 0.074         | 0.277         | 0.042       | 0.907                              | 6.4                       | ] ]                     | 18             |
| 4         | Rovno88-2I       | 0.603       | 0.076         | 0.276         | 0.045       | 0.938                              | 6.4                       | 3.0                     | 18             |
| <b>5</b>  | Rovno88-1S       | 0.606       | 0.074         | 0.277         | 0.043       | 0.962                              | 7.3                       | 2.2                     | 18             |
| 6         | Rovno88-2S       | 0.557       | 0.076         | 0.313         | 0.054       | 0.949                              | 7.3                       | 3.8                     | 25             |
| 7         | Rovno88-2S       | 0.606       | 0.074         | 0.274         | 0.046       | 0.928                              | 6.8                       |                         | 18             |
| 8         | Bugey-3-15       | 0.538       | 0.078         | 0.328         | 0.056       | 0.936                              | 4.2                       |                         | 15             |
| 9         | Bugey-3-40       | 0.538       | 0.078         | 0.328         | 0.056       | 0.942                              | 4.3                       | 4.0                     | 40             |
| 10        | Bugey-3-95       | 0.538       | 0.078         | 0.328         | 0.056       | 0.867                              | 15.2                      | J                       | 95             |
| 11        | Gosgen-38        | 0.619       | 0.067         | 0.272         | 0.042       | 0.955                              | 5.4                       |                         | 37.9           |
| 12        | Gosgen-46        | 0.584       | 0.068         | 0.298         | 0.050       | 0.981                              | 5.4                       | 2.0                     | 45.9           |
| 13        | Gosgen-65        | 0.543       | 0.070         | 0.329         | 0.058       | 0.915                              | 6.7                       | ) (3.0                  | 64.7           |
| 14        | ILL              | 1           | 0             | 0             | 0           | 0.792                              | 9.1                       | í J                     | 8.76           |
| 15        | Krasnoyarsk87-33 | 1           | 0             | 0             | 0           | 0.925                              | 5.0                       |                         | 32.8           |
| 16        | Krasnoyarsk87-92 | 1           | 0             | 0             | 0           | 0.942                              | 20.4                      | } <sup>4.1</sup>        | 92.3           |
| 17        | Krasnoyarsk94-57 | 1           | 0             | 0             | 0           | 0.936                              | 4.2                       | 0                       | 57             |
| 18        | Krasnoyarsk99-34 | 1           | 0             | 0             | 0           | 0.946                              | 3.0                       | 0                       | 34             |
| 19        | SRP-18           | 1           | 0             | 0             | 0           | 0.941                              | 2.8                       | 0                       | 18.2           |
| 20        | SRP-24           | 1           | 0             | 0             | 0           | 1.006                              | 2.9                       | 0                       | 23.8           |
| 21        | Nucifer          | 0.926       | 0.061         | 0.008         | 0.005       | 1.014                              | 10.7                      | 0                       | 7.2            |
| 22        | Chooz            | 0.496       | 0.087         | 0.351         | 0.066       | 0.996                              | 3.2                       | 0                       | $\approx 1000$ |
| 23        | Palo Verde       | 0.600       | 0.070         | 0.270         | 0.060       | 0.997                              | 5.4                       | 0                       | $\approx 800$  |
| <b>24</b> | Daya Bay         | 0.561       | 0.076         | 0.307         | 0.056       | 0.946                              | 2.0                       | 0                       | $\approx 550$  |
| 25        | RENO             | 0.569       | 0.073         | 0.301         | 0.056       | 0.946                              | 2.1                       | 0                       | $\approx 410$  |
| <b>26</b> | Double Chooz     | 0.511       | 0.087         | 0.340         | 0.062       | 0.935                              | 1.4                       | 0                       | $\approx 415$  |

#### **Global Fits: Result**





|                  | $\mathbf{SH}$ | Reactor Rates | Daya Bay      | Combined      |
|------------------|---------------|---------------|---------------|---------------|
| $\sigma_{f,235}$ | $6.69\pm0.14$ | $6.35\pm0.09$ | $6.17\pm0.17$ | $6.29\pm0.08$ |
| $\sigma_{f,239}$ | $4.40\pm0.11$ | $3.82\pm0.43$ | $4.27\pm0.26$ | $4.24\pm0.21$ |

TABLE I. Comparison of the theoretical Saclay+Huber (SH) values of the cross sections per fission  $\sigma_{f,235}$  and  $\sigma_{f,239}$  with those obtained from the fit of the reactor rates, from the Daya Bay data [5], and from the combined fit. The units are  $10^{-43}$  cm<sup>2</sup>/fission.

# Other Theta 13 Experiments?



#### Double Chooz

- Pro: only 2 reactors, so variation in fission fraction will be a bit higher
- Con: IBD statistics much lower: ~1000/day (DYB: ~4000/day nGd+nH); ND running since 2015: ~0.4M IBD current (DYB: >4M IBD nGd+nH)

#### • RENO

- Similar core-sampling for RENO, DYB
- Con: only I (smaller) near detector: I6 tons; ~650 IBD/day (DYB: 80 tons)



 Despite statistical limitations, it would be interesting to see new flux evolution results from these collaborations

# Result: Flux Data-Model Comparison

- Measured slope is different than model prediction by  $3.1\sigma$
- Could mean a couple things:
  - <sup>239</sup>Pu prediction is too low



# Result: Flux Data-Model Comparison

- Measured slope is different than model prediction by 3.1  $\sigma$
- Could mean a couple things:
  - <sup>239</sup>Pu prediction is too low
  - <sup>235</sup>U prediction is too high



# Result: Flux Data-Model Comparison

- Measured slope is different than model prediction by  $3.1\sigma$
- Could mean a couple things:
  - <sup>239</sup>Pu prediction is too low
  - <sup>235</sup>U prediction is too high
  - Something is WAY off with <sup>238</sup>U, <sup>241</sup>Pu



# **Result: More Complicated Scenarios**



- NOTE: result doesn't explicitly rule out sterile nu altogether
  - Some more complicated scenarios still allowed, i.e.: <sup>239</sup>Pu UP + sterile nu
- An editorial opinion:
  - The whole reason we introduced sterile neutrinos to this reactor picture was to avoid having to admit the models were wrong... Hmmmmm.....



# Predicting $S_i(E)$ , Neutrinos Per Fission



- Two main methods:
- Ab Initio approach:
  - Calculate spectrum branch-by-branch w/ databases: fission yields, decay schemes, ...
  - **Problem:** rare isotopes / beta branches: missing, possibly incorrect info...
- Conversion approach
  - Measure beta spectra directly
  - Convert to  $\overline{V}_e$  using 'virtual beta branches'
  - **Problem:** 'Virtual' spectra not well-defined: what forbiddenness, charge, etc. should they have?
  - The preferred method until recently - matched measured fluxes and spectra.





TIC ENERGY OF BETAS IN MEV

# Predicting $S_i(E)$ , Neutrinos Per Fission

 Early 80s: ILL Ve data fits newest ab initio spectra well

> Davis, Vogel, et al., PRC 24 (1979) Kown, et al., PRD 24 (1981)

 I980s: New reactor beta spectra: measurements conversion now provides lower systematics

> Schreckenbach, et al., Phys Lett B160 (1985) Schreckenbach, et al., Phys Lett B218 (1989)

I 990s: Bugey measurements fit converted spectrum well

B.Achkar, et al., Phys Lett B374 (1996)

 I980s-2000s: Predicted, measured fluxes agree



# **IBD** Signal Selection



- Reject spontaneous PMT light emission ("flashers")
- 2 Prompt positron:
  - 0.7 MeV < Ep < 12 MeV
- ③ Delayed neutron:
  - 6.0 MeV < Ed < 12 MeV
- (4) Neutron capture time:
  - 1 μs < t < 200 μs
- 5 Muon veto:
  - Water pool muon (>12 hit PMTs): Reject [-2μs; 600μs]
  - AD muon (>3000 photoelectrons): Reject [-2 μs; 1400μs]
  - AD shower muon (>3×10<sup>5</sup> p.e.): Reject [-2 μs; 0.4s]

6 Multiplicity:

- No additional prompt-like signal 400µs before delayed neutron
- No additional delayed-like signal 200µs after delayed neutron



### **IBD** Candidate Detection Rates



- ~ 400-800 IBDs in each Near Site AD per day (x4 ADs)
- Can see when reactors are turned on and off



# Daya Bay: A Low-Background Experiment





#### **Reactor Prediction Possibilities**

- A litany of hypotheses <u>HOW</u> the flux/spectrum are incorrect:
  - Maybe it's specifically related to beta-decays:
    - Maybe forbidden decays aren't treated properly. Hayes, et al, PRL 112 (2014), PRD 92 (2016)
    - Maybe prominent beta branches measurements are incorrect. See TAS measurements...
    - Maybe fission isotope beta spectrum measurements are wrong. Dwyer+Langford, PRL 114 (2015)
  - Maybe it's specifically related to fission yields:
    - Fission yield databases are incorrect! Sonzogni, et al PRL 116 (2016)
    - Fission yield dependence on neutron energy not considered correctly. Hayes, et al, PRD 92 (2016)
  - Maybe there's an issue with \*ONLY\* U238 Hayes, et al PRD 92 (2016)
  - Maybe there's an issue with \*ONLY\* Pu239 or U235 Buck, et al, Phys. Lett. B 765 (2017)



• Etc...



10<sup>8</sup> yr

106 vr

104 yr

#### **Reactor Prediction Possibilities**

- A litany of hypotheses <u>HOW</u> the flux/spectrum are incorrect:
  - Maybe it's specifically related to beta-decays:



140

fission produ

Maybe it's specifically related to fission yields:

# If they COULD be addressed, it might change the way we think about OTHER hypotheses (like sterile neutrinos!)

Pu239 or U235 Buck, et al, Phys. Lett. B 765 (2017)



# Example: Only <sup>239</sup>Pu, or Only <sup>235</sup>U?



- HEU reactors burn <u>only</u> <sup>235</sup>U
  - What will the data:model comparison from 4-6 MeV look like from HEU?
    - No bump = bump mainly from U235
    - Larger bump = bump mainly from Pu239
    - Same bump = something else is responsible...
  - Upcoming SBL reactor experiments are crucial
    - PROSPECT: HFIR reactor
    - STEREO: ILL reactor
    - Solid: BR2 reactor
  - Good reason to believe these experiments, combined with θ<sub>13</sub> experiments, can produce meaningful new constraints.





# Only <sup>239</sup>Pu, or Only <sup>235</sup>U?

- Each θ<sub>13</sub> experiment has reactors with varying <sup>235</sup>U and <sup>239</sup>U fractions
- Perhaps changes in bump size will accompany changes in fission fractions?
  - Note: nobody has actually measured a change in <u>spectrum</u>, let alone the bump, with burnup... (Rovno in 1994, maybe?)
  - Needless to say: this is VERY difficult...
- RENO's first look: inconclusive
  - No change visible within statistics
  - However, context is missing: how much change <u>should one expect?</u>
  - Example: If the bump is all from <sup>235</sup>U, what would that look like on this plot?
- More investigation should be done...



# Example: Neutron Energy Issues?



- Models based on <sup>235</sup>U, <sup>239</sup>Pu, <sup>241</sup>Pu beta spectra measurements: these come from <u>thermal neutrons only</u>
  - $\theta_{13}$  experiment reactors have a mix of thermal, epithermal and fast neutrons...
- It is well-known that fission yields vary with neutron energy
- Big question: how big of an effect does this have on the reactor spectrum?
- Could measure with different reactor types:
  - HFIR: More epithermal neutrons
  - NIST: Fewer epithermal neutrons
  - PROSPECT just got a new travel itinerary.....?;)
  - Note: effects may differ for <sup>235</sup>U, <sup>239</sup>Pu (must measure both...)



# PROSPECT Experimental Layout



