





#### Searches for heavy dark matter decay with IceCube IPA 2017 Madison WI 08/05/2017 Presented by: Hrvoje Dujmović Sungkyunkwan University Coauthored with: Jöran Stettner **RWTH Aachen University** On behalf of: IceCube collaboration

## Motivation



- Many models of physics Beyond-the-Standard-Model contain heavy (>TeV) dark matter expected to decay into SM particles, including high energy neutrinos
- The discovery of high energy cosmic neutrinos by IceCube and the lack of point sources has opened up many questions about their origin
- Despite a lot of theoretical papers on the subject, very few experimental lifetime limits exist above 100 TeV



### Data samples



 Two similar independent analyses are performed on two non-overlapping data sets

| Cascade sample                                | Track sample                          |  |
|-----------------------------------------------|---------------------------------------|--|
| High energy (>TeV) events<br>Very high purity |                                       |  |
| 2yr (6.2010-6.2012)                           | 6yr (6.2009-6.2015)                   |  |
| Full sky coverage                             | Up-going events $\theta > 85^{\circ}$ |  |
|                                               | ~30x higher A <sub>eff</sub>          |  |
| Significantly better energy resolution        |                                       |  |
| 278 events                                    | 340'000 events                        |  |

## Dark matter decay channel



- The chosen benchmark channels is:
  - X→Hv/Zv, flavour agnostic
     (resulting v spectra are not distinguishable by IceCube)
- Due to the relatively poor energy resolution, the analysis is not too sensitive to the assumed decay channel
   Decay spectra of a 2 PeV DM particle (convolved with 5% log-normal)



## Dark matter model

![](_page_4_Picture_1.jpeg)

#### • The dark matter decay signal is composed of:

![](_page_4_Figure_3.jpeg)

# Flux predictions

![](_page_5_Picture_1.jpeg)

- The fluxes considered and their *parameterizations* are:
  - Signal:

    - Galactic DM decay flux
       Extra-galactic DM decay flux
      } (mass, lifetime)
  - Backgrounds: 0
    - Atmospheric background
    - Isotropic astrophysical power law (*normalization, index*)

# Flux predictions

![](_page_6_Picture_1.jpeg)

- The observables used are log(E), right ascension, cos(zenith)
- For a given parameter configuration, the expected  $\nu$  spectra for  $m_{\chi} = 10^8 \text{GeV}, \chi \rightarrow H\nu$ ٠ neutrino flux 10<sup>3</sup> Sepctrum at origin is calculated 10<sup>2</sup> Spectrum at earth IceCube events true energy spectrum • Using a full  $10^{1}$ IceCube resonstructed energy spectrum detector simulation, 10<sup>0</sup> the distribution Flux [a.u.] of reconstructed  $10^{-1}$ events is 10-2 sample calculated 10-3 cascade  $10^{-4}$ eCube preliminary  $10^{-5}$ 7 8 9  $\log_{10}(E_{\nu}[GeV])$ 08/05/2017 Searches for heavy dark matter decay with IceCube Page 7

## Analysis methods

![](_page_7_Picture_1.jpeg)

• Both analyses use the TS:

$$TS = \ln\left(\frac{L(\hat{\phi}_{astro}, \hat{\gamma}_{astro}, \hat{m}, \hat{\tau})}{L(\hat{\phi}_{astro}, \hat{\gamma}_{astro}, \tau = \infty)}\right)$$

- Sets of pseudo-experiments are performed with background and background + injected signal and the resulting TS is compared to the data
- If the pseudo-experiments with a certain DM mass and lifetime are not compatible with the data, that model can be excluded Track analysis

| exc | Tuded Track analysis                                  | Cascade analysis                                       |
|-----|-------------------------------------------------------|--------------------------------------------------------|
|     | Binned likelihood method<br>26-41-4 bins in<br>E-RA-θ | Unbinned likelihood<br>method                          |
|     | Neyman limit construction                             | 2D Feldman Cousins acceptance regions in $\hat{m}$ –TS |
|     | One sided 90% c.l. intervals                          | Two sided 90% c.l. intervals                           |

![](_page_8_Figure_0.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

<sup>08/05/2017</sup> 

# Signal significance

![](_page_11_Picture_1.jpeg)

- Comparing data to pseudo unblindings gives p values of 0.55 for cascades and 0.034 tracks
  - For the track analysis most of the significance is coming from the first three years of data
    - In order to be conservative the limit is thus derived using one sided 90% c.l. intervals

![](_page_11_Figure_5.jpeg)

## Systematics

![](_page_12_Picture_1.jpeg)

- Track analysis
  - Ice model systematics, DOM efficiencies and atmospheric flux uncertainties:
    - These are treated as nuisance parameters that are directly included into the original fit
    - They lead to a minor reduction in the limit
  - Halo model systematics are derived by changing halo profile parameters within their uncertainties and determining the effect on the derived limit
    - The overall effect of the halo profile uncertainties is ~10%
- Cascade analysis
  - Preliminary systematic study was done before unblinding
  - Full systematics study coming soon
  - The calculated systematics are:
    - Halo model, Atmospheric flux uncertainties, Prompt atmospheric flux, DOM efficiency, Simulation statistics

04/05/2017

# Lifetime limit

![](_page_13_Picture_1.jpeg)

- From the non-observation of a strong dark matter signal a lifetime limit can be derived
- The limit is currently 90% CL dark matter lifetime limits the best experimental 31 IceCube preliminary Fermi yv dark matter lifetime Old IceCube analysis vv log10(Dark matter lifeteime [s]) 30 limit at high masses IceCube 2y cascades Hv IceCube 6y tracks Zv 29 IceCube 6y tracks bb 28 27 e S 26 PhV Phv 25 Fermi **IC22** 24 2 4 5 6 7 8 З 9

08/05/2017 Sear

Searches for heavy dark matter decay with IceCube

log<sub>10</sub>(Dark matter mass [GeV])

# Summary and outlook

![](_page_14_Picture_1.jpeg)

- 2 independent analysis have been performed on two non-overlapping neutrino samples
- Dark matter decay signal has been fitted on top of an atmospheric background and an astrophysical power-law
- No significant dark matter signal has been detected
- Preliminary results yield a new upper lifetime limit for heavy dark matter particles
- What you can expect in the near future:
  - o A full systematic study
  - $\circ\,$  Limits for other decay channels
  - $\circ\,$  A combined ICRC contribution and publication

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_17_Picture_1.jpeg)

#### Tracks fit parameters:

- o Dark matter mass
- Dark matter lifetime
- $\circ$  Astrophysical flux normalization
- o Astrophysical flux index
- $\circ$  Conventional atmospheric flux normalization
- Prompt atmospheric flux normalization
- $\circ$  Cosmic ray composition
- o Cosmic ray kaon/pion ratio
- DOM efficiency Ice models
- o Ice absorption
- o Ice scattering

08/05/2017

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

08/05/2017

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_2.jpeg)