Optical Surveys and Particle Astrophysics: Prospects in the LSST Era

Keith Bechtol LSST IceCube Particle Astrophysics Symposium 10 May 2017

Large Synoptic Survey Telescope (LSST)

New optical telescope + camera under construction in Chile optimized for survey astronomy, scheduled to begin a decade of science operations in 2022

Open data access for the US and Chilean scientific community + partner institutions

Construction Video <u>https://youtu.be/VAu61viS7p0</u>

Role of Optical Surveys in Particle Astrophysics

Catalogs for multiwavelength / multimessenger science

• Source association / classification, redshifts, optical EBL

Mapping the (dark) matter distribution

- Cosmic expansion history and growth of structure
- Targets for indirect dark matter searches
- Local dark matter density
- Interstellar dust (+gas)

Electromagnetic counterparts for explosive transients

- Supernova neutrinos
- TeV-PeV neutrinos
- Gravitational waves

All of these science topics are *already* being pursued, and will be substantially advanced by next-generation surveys, including LSST

Photon Collecting Power

Etendue = Field of View × Effective Aperture (× Efficiency)

Etendue measures to how fast a telescope + camera can map the sky

Volumetric Survey Speed

(Example for $M_V = 19$ mag, typical of type Ia SN)

Optimized for Survey Science

90% observing time in "universal" cadence: **Wide-Fast-Deep 10%** for special projects (e.g., deep drilling fields, Galactic plane)

Single Epoch

Each patch visited ~800 times over 10 years with a broad range of time sampling (*r* ~ 24.7) → Level 1 data products (within 60 sec)

Image Stack

Combined analysis of all images in 6 broadband optical filters: colors, shapes, proper motion, statistical variability (~30x deeper; *r* ~ 27.5) → Level 2 data products (annual release)

Visit = 2 x (15 sec exposure + 2 sec readout) New field every ~40 seconds

~1000 visits per night \rightarrow ~10K deg² per night

Catalogs for Multiwavelength / Multimessenger Science

100x deeper than SDSS
>10x deeper than DES
Comparable depth to Hubble
COSMOS, but over an area
104 larger (in 6 filters)

LSST Science Book arXiv:0912.0201

LSST will catalog more stars and galaxies (~40 billion) than all previous astronomical surveys combined

AGN Classification, Demographics, and Evolution

LSST AGN Sample

- >500 deg⁻², >10 M in full survey
- Typically a factor 1000 range in luminosity at a given redshift
- Extending to $z \sim 7$, w/ $\Delta z = \pm 0.1$ for 90% of quasar sample

Multiple detection strategies

- Colors (*ugrizy*)
- Lack of proper motion (relative to foreground stars)
- Variability (~20 epochs per year in a given band)

LSST Science Book arXiv:0912.0201

Mapping the (Dark) Matter Distribution

From large scale structure ...

... to Galactic subhalos

Cosmic Acceleration (wo, wa, ...)

8 A

LSST combines multiple complementary probes of cosmic expansion history and growth of structure to explore parameter space beyond ACDM

- Type la Supernova
- Galaxy Clusters
- Baryon Acoustic Oscillations
- Weak Lensing
- Strong Lensing

Further calibration of systematic uncertainties from CMB, spectroscopic, 21cm surveys, ...

Massive Neutrinos $(\sum m_v)$

Massive neutrinos suppress structure formation on small scales

CMB-S4 Science Book 1610.02743

Massive Neutrinos $(\sum m_v)$

Combination of neutrino-less double beta-decay experiments + cosmology could determine mass hierarchy and dirac/majorana nature of neutrinos

Oscillation experiments: $\sum m_{\nu} > 0.058 \text{ eV}$

LSST: $\sigma(\sum m_{\nu}) = 0.02 \text{ eV}$

Light Relics (N_{eff})

Sensitive not only to Standard Model neutrinos, but to ALL relativistic species in the early universe (axions, sterile neutrinos, hidden photons, gravitinos, ...)

Closer to Home: Searching for the Darkest Galaxies

Our current census of Milky Way satellites is highly incomplete

Two new ultra-faint galaxy candidates found in first 300 deg² of HSC SSP data that were likely not detectable in any previous wide-field survey (<1% of 4π celestial sphere)

Homma et al. 2017

Similarly, we estimate that ~half of the ultra-faint galaxy candidates found with DES would not have been detected in a survey of SDSS depth

Bechtol et al. 2015, Drlica-Wagner et al. 2015

Indirect Dark Matter Searches Targeting dSph Galaxies

Indirect Dark Matter Searches Targeting dSph Galaxies

Impact of Galactic Halo Uncertainty on Direct Detection Searches

Varying local dark matter density

Kelso et al. 2016, arXiv:1601.04725 Sloane et al. 2016, arXiv:1601.05402

Varying dark matter velocity distributions

Dark Matter Constraints from Gravitational Microlensing (MACHOs)

Single night of HSC observations

A Different Kind of Dark Matter: Three-Dimensional Dust Maps

Gamma-ray interstellar emission maps are typically created from gas maps where radial velocity is translated to distance assuming a galactic rotation curve (with degenerate solutions) Differential extinction along line of sight measured for stars at a range of heliocentric distances (thin slice of map)

More visualiztions: http://argonaut.skymaps.info/

Electromagnetic Counterparts for Multi-messenger Transients

LSST will explore parameter space for fast transients with timescales <1 day that is now largely unexplored, along with rare and/or faint event classes

Diffuse Supernova Neutrino Background (MeV)

- ~90% of diffuse SN neutrino background events from 10-26 MeV (positron energy) produced at z < 1
- LSST to detect ~10⁵ CC SN per year to z ~ 1 in main survey
- Directly measure the CC SN rate at z ~ 0.3 to precision of ±5%
- Probe fraction of invisible SN events

Lien et al. 2010

Detecting "Invisible" Supernovae?

What about a star that collapses *without* producing excess electromagnetic radiation?

"Invisible" SN (a disappearing star) detected via difference image analysis as a *negative* point-like source coincident with galaxies within ~10 Mpc

Ando et al. 2005 0.8 NGC 6946 $R_{SN}(< D) [yr^{-1}]$ 9.0 [yr^{-1}] Galaxy Catalog⁻ Maffei Grou C 342 NGC 4594 NGC 2903 3 0.2 Σ Continuum Limit 0 10 8 6 Distance D [Mpc]

Example analysis from LSST proto-pipeline Niikura et al. 2017 arXiv:1701.02151

Upper bounds from optical search compatible with current GW search

See also Cowperthwaite 2016 arXiv:1606.04538

Expected Localization 90% Confidence Regions

By early 2020s, we expect that a substantial fraction of BNS merger events will be localized to an area of ~10 deg², comparable to a single LSST pointing

Also, limited GW detection horizon is an advantage for EM counterpart identification

Kasliwal & Nissanke 2014

TeV Supernova Neutrinos

Precursor Neutrinos

Senno, Murase, & Meszaros 2016

Choked Jet

Meszaros & Waxman 2001 Ando & Beacom 2005 Senno, Murase, & Meszaros 2016

Low luminosity GRB

Murase et al. 2006 Murase & loka 2013 Tamborra & Ando 2016

Type IIn SN

Murase et al. 2011 Katz, Sapir, & Waxman 2011 Zirakashvili & Ptuskin 2016 Prompt (1-100 sec)

See next talk by Anna Frankowiak

Interactions with dense circumstellar wind (~months)

Optical Follow-up of IceCube Tracks: Access to the Southern Hemisphere

Optical Follow-up of IceCube Tracks: Benefits of a Larger Aperture

Estimate coincidence rate of unassociated CC SN in full DECam field of view (3 deg²) using a 10 day window centered on neutrino event

Takeaways

Vac.

- ★ Optical imaging surveys: wider, faster, deeper
- ★ LSST will soon (~2022) join the growing ensemble of wide-field, timedomain, and multi-wavelength / multi-messenger experiments

PREPARING FOR BIG DATA

eloping methods to mine, analyze, and understand LSST data

- ★ Public dataset, broad scientific reach
- ✤ Optimal implementation of LSST observing strategy is currently being discussed, including possibility for a limited ToO program

What can LSST do for particle astrophysics?

Bonus Slides

Confluence of Enabling Technologies

- ✓ 8 m class aspheric mirrors
- ✓ Mosaic of high quantum efficiency CCDs w/ near-IR sensitivity
- Increasing computational power

Project Construction Schedule

The project is on track to achieve first light in 2020, and to formally begin the decade of operations on 1 October 1 2022

Project Construction Schedule

The project is on track to achieve first light in 2020, and to formally begin the decade of operations on 1 October 1 2022

Project Construction Schedule

The project is on track to achieve first light in 2020, and to formally begin the decade of operations on 1 October 1 2022

Overview of the LSST System

Cerro Pachón – Future site of the LSST

Three Mirror Optical System

Primary mirror 8.4 m

Effective aperture 6.7 m

Focal length f/1.23

Plate scale 50.9 µm/"

Etendue 319 m² deg²

World's Largest Camera for Astronomy

Survey:

Telescope field of view = 9.6 deg^2

Main survey area = 18,000 deg² Filters = *ugrizy* (6) Visits per night = 1000 Survey Duration = 10 yr Total visits per pointing = 825

Imaging depth:

Single visit (*r,* S/N=5) = 24.7 mag Stack depth (*r,* S/N=5) = 27.5 mag

Expected number of objects: Galaxies = 20 billion Stars = 17 billion Sources (single-epoch) = 7 trillion Forced sources = 30 trillion

Alert production:

Real-time alert latency = 60 sec Throughput = 10 million per night

Data (Data Release 11): Data collected per 24 hr = 15 TB Total image collection = 0.5 EB Database size = 15 PB

Survey:

Telescope field of view = 9.6 deg² Main survey area = 18,000 deg²

Filters = *ugrizy* (6) Visits per night = 1000 Survey Duration = 10 yr Total visits per pointing = 825

Imaging depth:

Single visit (*r,* S/N=5) = 24.7 mag Stack depth (*r,* S/N=5) = 27.5 mag

Expected number of objects:

Galaxies = 20 billion Stars = 17 billion Sources (single-epoch) = 7 trillion Forced sources = 30 trillion

Alert production:

Real-time alert latency = 60 sec Throughput = 10 million per night

```
Data (Data Release 11):
Data collected per 24 hr = 15 TB
Total image collection = 0.5 EB
Database size = 15 PB
```

90% of observing in "Universal Cadence" 10% for special projects

Coverage over the entire southern hemisphere

- "Visit" = 16 second exposure
 - + 2 second readout
 - + 16 second exposure

Survey:

Telescope field of view = 9.6 deg^2 Main survey area = $18,000 \text{ deg}^2$ Filters = uarizy (6)

Filters = *ugrizy* (6)

Visits per night = 1000 Survey Duration = 10 yr Total visits per pointing = 825

Imaging depth:

Single visit (*r,* S/N=5) = 24.7 mag Stack depth (*r,* S/N=5) = 27.5 mag

Expected number of objects:

Galaxies = 20 billion Stars = 17 billion Sources (single-epoch) = 7 trillion Forced sources = 30 trillion

Alert production:

Real-time alert latency = 60 sec Throughput = 10 million per night

Data (Data Release 11): Data collected per 24 hr = 15 TB Total image collection = 0.5 EB Database size = 15 PB

Data (Data Release 11):

Data collected per 24 hr = 15 TB

Total image collection = 0.5 EB

Database size = 15 PB

100x deeper than SDSS >10x deeper than DES

Comparable depth to *Hubble* COSMOS, but over an area 10⁴ larger (in 6 filters) ₄₇

Survey:

Telescope field of view = 9.6 deg² Main survey area = 18,000 deg² Filters = *ugrizy* (6) Visits per night = 1000 Survey Duration = 10 yr Total visits per pointing = 825

Imaging depth: Single visit (*r,* S/N=5) = 24.7 mag Stack depth (*r,* S/N=5) = 27.5 mag

Expected number of objects:

Galaxies = 20 billion Stars = 17 billion Sources (single-epoch) = 7 trillion Forced sources = 30 trillion

Alert production: Real-time alert latency = 60 sec Throughput = 10 million per night

Data (Data Release 11): Data collected per 24 hr = 15 TB Total image collection = 0.5 EB Database size = 15 PB

LSST will catalog more stars and galaxies than all previous astronomical surveys combined

...but perhaps even more important is the anticipated *quality* and *richness* of the data, as well as *homogeneous* processing

Survey:

Telescope field of view = 9.6 deg² Main survey area = 18,000 deg² Filters = *ugrizy* (6) Visits per night = 1000 Survey Duration = 10 yr Total visits per pointing = 825

Imaging depth:

Single visit (r, S/N=5) = 24.7 mag Stack depth (r, S/N=5) = 27.5 mag

Expected number of objects: Galaxies = 20 billion Stars = 17 billion Sources (single-epoch) = 7 trillion Forced sources = 30 trillion

Alert production:

Real-time alert latency = 60 sec Throughput = 10 million per night

Data (Data Release 11):

Data collected per 24 hr = 15 TB Total image collection = 0.5 EB Database size = 15 PB

LSST Data Products and Services

Difference imaging analysis

- A stream of ~10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
- A catalog of orbits for ~6 million bodies in the Solar System.

Direct image analysis

- A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 trillion single-epoch detections ("sources"), and ~30 trillion forced sources, produced annually, accessible through online databases. Includes proper motion, size and shape measurements (w/ posteriors), photometric redshift (w/ posteriors), and statistical variability metrics.
- Deep co-added images.

Co-located data and processing resources

- Services and computing resources at the Data Access Centers to enable user-specified custom processing and analysis.
- Software and APIs enabling development of analysis codes.

eve

D

0

50

A Selection of High-level Science Requirements

Survey Property	Performance (design value)					
Image Depth (single visit)	24.7 mag in <i>r</i> -band at SNR = 5					
Median Delivered Seeing	0.7″ FWHM					
Photometry (single visit)	0.5% repeatability, 1% relative, 1% absolute, 0.5% color					
Astrometry (single visit)	10 mas relative, 50 mas absolute					
Proper Motion	0.2 mas yr					
Residual PSF Ellipticity Power	2 x 10					
Transient Detection	95% purity at 90% detection efficiency for SNR > 6					

Note that many of the requirements are specified in terms of a *distribution* (e.g., median and outlier fraction)

"mas" = milliarcsecond

Comparing Wide-field Optical Survey Cameras

Comparison of Existing and Planned Wide-field Optical Survey Cameras												
Survey Camera	D (m)	$\Omega_{\rm fov}$ (deg ²)	Etendue $(m^2 deg^2)$	Pixels (")	t _{exp} (s)	t _{OH} (s)	m _{lim}	$(\text{deg}^2\text{hr}^{-1})$	$N_{ m obs}$ (yr ⁻¹)	\dot{V}_{-19} (Mpc ³ s ⁻¹)	$f_{ m spec}$	
Evryscope	0.06(27×)	8660	26.5	13.3	120	4	16.4	251419	19279	1.1×10^{4}	1.00	
ASAS-SN 1	0.14(4×)	73	1.1	7.8	180	23	17	1294	99	1.2×10^2	1.00	
ATLAS	0.5(2×)	60	11.8	1.9	30	8	20.0	5684	435	2.3×10^4	1.00	
CRTS	0.7	8.0	3.1	2.5	30	18	19.5	600	46	1.4×10^{3}	1.00	
CRTS-2	0.7	19.0	7.3	1.5	30	12	19.5	1628	124	3.7×10^{3}	1.00	
LSQ	1.0	8.7	6.8	0.9	60	40	20.5	313	24	2.3×10^{3}	1.00	
PTF	1.2	7.3	8.2	1.0	60	46	20.7	246	18	2.3×10^{3}	1.00	
Skymapper	1.3	5.7	7.5	0.5	110	20	21.6	157	12	3.9×10^{3}	0.52	
PS1 3π	1.8	7.0	17.8	0.3	30	10	21.8	630	48	1.9×10^4	0.42	
SST	2.9	6.0	39.6	0.9	1	6	20.7	3085	236	2.7×10^4	1.00	
MegaCam	3.6	1.0	10.2	0.2	300	40	22.8	10	0.8	8.8×10^2	0.16	
DECam	4.0	3.0	37.7	0.3	50	20	23.7	154	11	2.9×10^4	0.07	
HSC	8.2	1.7	89.8	0.2	60	20	24.6	76	5	3.1×10^{4}	0.03	
BlackGEM*	0.6(4×)	2(4×)	11.3	0.6	30	5	20.7	822	63	7.6×10^{3}	1.00	
\mathbf{ZTF}^*	1.2	47	53.1	1.0	30	15	20.4	3760	288	2.5×10^4	1.00	
LSST*	6.7	9.6	319.5	0.2	30	11	24.7	842	64	3.7×10^{5}	0.03	

Bellm 2016 arXiv:1605.02081 Cross-correlating Large Scale Structure w/ Extragalactic Gamma-ray Background

Example from DES Science Verification data 140 deg²

Cross-correlating Large Scale Structure w/ Extragalactic Gamma-ray Background

Combined analysis of lensing mass maps from CFHTLenS, RCSLenS, KiDS (total ~1000 deg², compared to LSST ~ 18000 deg²)

Milky Way Satellite Galaxy Discovery Timeline

Extending Search Throughout the Milky Way Halo and Beyond

Consider multiple observational handles

- Colors \rightarrow star/galaxy separation, distinct stellar populations
- Variability → variable stars as three-dimensional tracers of halo substructures
- Proper motion → star/galaxy separation, foreground stars, constrain Milky Way potential
- Diffuse light → dwarf galaxies in the field

Identifying Dark Subhalos

Stellar Stream Gaps

- Dark satellites perturb stellar stream
- Statistical detection of low-mass subhalos around the Milky Way
- Active theoretical work on interpretation

Strong Gravitational Lensing

- Subhalos detected as spatial, temporal, or flux ratio anomalies in lensed images
- Ability to detect dark subhalos around lens galaxies at cosmological redshifts
- LSST will detect ~10⁴ galaxy-galaxy lenses and ~10³ lensed quasar systems

Being ready for surprises... MACHO Dark Matter constraints

With follow-up spectroscopy, we infer a large mass-to-light ratio in the central regions of Eridanus II

 $M/L_V = 420^{+210}$ -140 M_{sol} / L_{sol}

(i.e., large dark matter density)

We can use the survival of this star cluster to place upper limits on the mass of individual dark matter particles. High-mass dark matter particles would disrupt the cluster.

The dwarf galaxy Eridanus II (discovered w/ DES) has it's own small star cluster.

Theoretical Kilonova Lightcurves

Typical distance of 200 Mpc (m - M = 36.5)

Barnes & Kasen 2013 model set

Optical Follow-up of IceCube Tracks: Access to the Southern Hemisphere

Searching for Explosive Optical Transients Associated w/ IceCube Events

