Realtime Gamma Ray - Neutrino Coincident Analyses with AMON Jimmy DeLaunay AMON Team IceCube Collaboration

Realtime Gamma Ray - Neutrino Coincident Analyses with AMON Jimmy DeLaunay AMON Team IceCube Collaboration

- AMON has been in realtime operations for over a year
 - Provided pass-through alerts of high-energy IceCube events to followup community
- Working on starting streams of γ ν coincident alerts
 - Goal is to find statistically interesting candidates for followup
- This talk; proposed search with subthreshold Swift BAT and IceCube events
 - Alerts will have
 - ~4 arcminute localizations
 - Reliable and Tunable FARs (False Alarm Rates)
 - Latency of a few hours

Swift's Burst Alert Telescope (BAT)

Swift Mission Operations Center located at Penn State

Found > 1000 GRBs! Archival data back to 2004 **FOV** ~ 15% of sky **Uptime ~ 80%** 15-150 keV coded imaging Up to ~500 keV count rates 0 Localizes GRBs to < 3 arcmin Done onboard in seconds

Jimmy DeLaunay

PENNSTATE.

<u>____</u>

*Info from https://gcn.gsfc.nasa.gov/gcn/swift.html

Jimmy DeLaunay

IPA 2017 4

	BAT	IceCube
Realtime Data	Subthreshold triggers received through GCN	 Events that pass IceCube's Gamma Ray Followup (GFU) filter Used in IceCube's realtime clustering analyses* Selects muon tracks that are, Likely to be of an astro. v origin Well reconstructed New and improved GFU filter launching nowish
Data used in this talk	4 years of archival subthreshold triggers	Fake arrival time and directions Made to match old GFU filters up and down going rates *Info about IceCube's realtime system and filters can be found at https://arxiv.org/abs/1612.06028 (IceCube Collaboration, 2016)
Jimmy	DeLaunay	IPA 2017 5

	BAT	IceCube
Signal	New γ -ray or x-ray transients	High energy v's of astro. origin
Background	Detector Noise Fluctuations - Rate changes across detector	Up-going: Atm. v's, Mis-reconstructed atm. muons Down-going: Atm. muons, Atm. v's
How signal-like	Signal to noise ratio	Work in progress Energy is best discriminator between atm. and astro. v's $ \begin{array}{c} $
Jimmy	DeLaunay	IPA 2017 6

The Search Technique

For each BAT event, look for IceCube events within ΔT and r_{search}

- $\Delta T = BAT exposure + 200s$
 - window goes 100s before and after exp.
 - Gives wiggles room for transient's actual duration
- 90% containment of GFU v's ~ 3° (IC realtime paper)
 - Good estimate for r_{search}

To find False Alarm Rate, find how often IceCube events randomly fall near BAT events

- Take random year section of BAT data
- Generate year of fake IC events
- Find number of BAT events that have an IC event within ΔT and r_{search}
- Repeat 1000 times

Likelihood Analysis Needed to cut down rate

event is very rare

IPA 2017

PENN<u>State</u>.

Log Likelihood for γ -v Pairs

3 major terms
$$\lambda = \lambda_{
u,PSF} + \lambda_{\gamma} + \lambda_{
u}$$

$$\lambda_{\nu,PSF}(\sigma_{\nu}, d_{\gamma-\nu}) = \log\left(\frac{1}{2\pi\sigma^2}\exp\left(-\frac{d^2}{2\sigma^2}\right)\right)$$

 $\lambda_{\nu} = ?$

- Log of v's position probability density at the **BAT** position
 - For now just assume a Gaussian PSF, σ =1°
 - Actual PSF, work in progress
- Log of the expected number of BAT false positives per solid angle $\lambda_{\gamma}(x_{\text{det}}, \Delta T, snr) = -\log\left(FPRD(x_{\text{det}}, snr) \cdot \Delta T\right)$

- FPRD: False Positive Rate Density
- Background term like λ_{γ} zenith dependent background rate
- Probability of being astro. v, and not atm. v or muon

Faking Some Signal Pairs

- Make a set of fake γ ν pairs originating from random point source locations
 - Use these to make a "Signal" λ distribution
- Random incoming angle to BAT detector
- *v* location placed d degrees away
 - Based off of overall GFU-sample PSF from MC
- BAT snr based off of toy model
 - Only keep subthreshold snr's, 3.8 7
 - Distribution pretty much flat
 - \circ 1s and 64s exposures

https://www.swift.psu.edu/

PENN<u>State</u>

IPA 2017

- Null = BAT data Fake IC Pairs
- Signal = Fake Pairs
- Null gives the False Alarm Rates
- Signal distribution gives the Signal Efficiency
- Signal Efficiency is still high at reasonable False Alarm Rates

Followup observatories can choose what to observe based off of False Alarm Rates

PENNSTATE.

Conclusions/Future

- This analyses can provide statistically interesting candidates for followup
 - Tunable False Alarm Rates
 - Latency of a few hours
 - A few arcminute localizations
- Likelihood analysis in its development stages can already discriminate well between null and signal populations
 - Need to add in IceCube's actual PSF and Signalness
 - Also need to run on real scrambled data
- AMON infrastructure all ready to go

PENN<u>State</u>

Backup Slides

Jimmy DeLaunay

IPA 2017 13

BAT Subthreshold Data

All Subthreshold data is archived Here I'll use 4 years of data from 2012 - 2015 788068 total events, very stable rate

Includes every source candidate found in an image with an snr > 3.8 σ (from image or rate triggers) **Exposures range from** milliseconds to minutes 70% are 64s \bigcirc 12% are rate triggers Ο 10 Image Triggers Counts 10^{5} Long Rate Triggers Short Rate Triggers 10^{4} 10^{0} 10¹ 10^{2} 10-3 10^{-2} 10⁻¹ 10^{3} 10^{4} Exposure (s) 1 8 5 5

https://imagine.gsfc.nasa.gov/Images/features/exhibit/coded_aperture.jpg

Jimmy DeLaunay

IPA 2017 16

PENN<u>State.</u>