Recent results and future perspectives on the Ultra-High Energy Cosmic Rays

Valerio Verzi

INFN, Sezione di Roma "Tor Vergata", Italy

ENERGY SPECTRUM

interactions with CMB GZK horizon ~100 Mpc

minimal deflection in galactic and intergalactic magnetic fields

UHECR HYBRID OBSERVATORIES

PIERRE AUGER OBSERVATORY Malargüe – Mendoza (Argentina) 35⁰ S latitude 3000 km² TELESCOPE ARRAY Millard County, Utah (USA) 39⁰ N latitude 700 km²

UHECR WORKING GROUPS

Telescope Array + Auger + IceCube

Spectrum, Anisotropy, Composition, Hadronic interactions, Multi-Messenger

Dedicated conferences:

- Nagoya (Japan) December 2010
- CERN February 2012
- Utah (USA) October 2014
- Kyoto (Japan) October 2016

HYBRID DETECTION TECHNIQUE

Surface Detector array (SD)
(+) duty cycle ~ 100%
(-) shower size at ground ∝ E (systematics)

Fluorescence Detector (FD)
(-) duty cycle ~ 13%
(+) calorimetric measurement of E

Calibrate SD signal against FD energies

$$E_{cal} = \int \frac{dE}{dX} dX$$

$$X_{\max} \sim \ln\left(\frac{E}{A}\right)$$

SD EVENTS

ENERGY SCALE

AUGER

ICRC13 arXiv:1307.5059

Absolute fluorescence yield	3.4%
Fluores. spectrum and quenching param.	1.1%
Sub total (Fluorescence Yield)	3.6%
Aerosol optical depth	3% ÷ 6%
Aerosol phase function	1%
Wavelength dependence of aerosol scattering	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere)	3.4% ÷ 6.2%
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration)	9.9%
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	2%
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%
Sub total (FD profile rec.)	6.5% ÷ 5.6%
Invisible energy	3% ÷ 1.5%
Statistical error of the SD calib. fit	0.7% ÷ 1.8%
Stability of the energy scale	5%
TOTAL	14%

TA Astropart.Phys. 61 (2015) 93-101

Item	Error (%)	Contributions
Detector sensitivity	10	PMT (8%), mirror (4%), aging (3%) filter (1%)
Atmospheric collection	11	aerosol (10%), Rayleigh (5%)
Fluorescence yield	11	model (10%), humidity (4%),
Reconstruction	10	atmosphere (3%) model (9%) missing energy (5%)
Sum in quadrature	21	

ENERGY SCALE

Fluorescence yield Auger uses Airfly TA uses Kakimoto+FLASH **Invisible energy** (ν, μ, ..) Auger: estimated from data exploiting the muon sensitivity of the SD signals

note: combined effect: 5%-10% relative shift between TA and Auger energy scales

AUGER ENERGY SPECTRUM

I. Valino (Auger) Pos (ICRC15) 271

P. Ghia, Auger highligh ICRC15

unprecedented precision with eposure > 50000 km² sr yr

- consistency between different measurements
- common FD energy scale

TA ENERGY SPECTRUM

D. Ivanov (TA) Pos (ICRC15) 349

20

TA vs Auger

consistency up to 3×10¹⁹ eV

 ${\sim}10\%$ energy shift is enough and expected from the different fluor. yield and $E_{\rm inv}$

inconsistency above

Is the difference at the highest energies due to experimental effects or to anisotropy signals?

ANISOTROPIES ABOVE 5×10¹⁹eV

Li-Ma significances in 12⁰ windows

EVIDENCE OF LARGE SCALE ANISOTROPY ABOVE 8×10¹⁸eV

Auger

harmonic analysis in right ascension and azimuth - vertical+inclined events

- isotropy between 4 and 8 EeV
- dipole amplitude above 8 EeV

7.3 ± 1.5% (p=6.4 × 10⁻⁵) point. at (α , δ) = (95⁰ ± 13⁰, -39⁰ ± 13⁰)

→Extragalactic origin?

Equatorial coordinates - 45⁰ smoothing

See also O. Deligny (Auger & TA) PoS (ICRC2015) 395 → full sky coverage

Auger, ApJ 802 (2015) 111

COMPOSITION

-0.2^[...] 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 log(E(eV))

COMPOSITION – TA vs AUGER

different ways to present the data:

- TA folded with det./rec. effets
- Auger unbiased

Auger TA WG

simulate TA events according to the auger X_{max} measurements
 reconstruct them and compare with data

COMPOSITION - AUGER

Porcelli (Auger) PoS (ICRC2015) 420 Auger PRD 90 (2014) 122005

post-LHC models

• predict the energy spectrum at Earth assuming that CRs are of extragalactic origin

HADRONIC INTERACTIONS

Auger, PRD 91 (2015) 032003

hybrid showers inclined at large zenith angle

10

 R_{μ}

Fit: $\langle R_{\mu} \rangle = a (E/10^{19} \text{ eV})^b$ 174 Auger hybrid events

30

events 15 stdev 0.20 ± 0.01

 $\begin{pmatrix} 0 \\ (R_{\mu} - \langle R_{\mu} \rangle) / \langle R_{\mu} \rangle \end{pmatrix}$

• muon excess ~ 30%-80% for mass composition from X_{max}

HADRONIC INTERACTIONS

Auger, PRL 117 (2017) 192001

OTHER OBSERVABLES SENSITIVE TO MASS COMPOSITION

 Auger, PRD 90 (2014) 122005
 Auger, PRD 92 (2015) 019903
 Auger, PRD 93 (2016) 072006

 L.Collica (Auger) PoS (ICRC2015) 336
 Auger, PRD 92 (2015) 019903
 Auger, PRD 93 (2016) 072006

Hadronic interaction models fail to provide consistent interpretations of different observables

PHOTON LIMITS

Auger, JCAP 04 (2017) 009 combine FD (X_{max}) and SD (steeper LDF for γ) data

most of top-down models ruled-out

AUGER NEUTRINO LIMITS

Auger, Phys. Rev. D 91 (2015) 092008

NO NEUTRINOS (E>100 PeV) IN COINCIDENCE WITH GW IN AUGER SD DATA Auger, PRD 94 (2016) 122007

CORRELATIONS AMONG IceCube NEUTRINOS AND TA+AUGER CRs

IceCube, Auger & TA JCAP01 (2016) 037

NO ULTRARELATIVISTIC MONOPOLES IN AUGER FD DATA

AUGER IN THE NEXT DECADE ary

arXiv:1604.03637

AugerPrime the upgrade of Auger

scintillator faster electronic (120 MHz)

. . .

- discriminate e.m. and muonic components
- mass sensitivity above the cut-off (no sensitivity from FD)

TA IN THE NEXT DECADE

H.Sagawa (TA), PoS (ICRC15) 657

TAx4 ~3000 km²

SD: 507 scintillators 1.2 km - 700 km²

new 500 SD stations 2.08 km spacing

2 additional FDs in MD and BR

OUTLOOK

- successful implementation of the hybrid technique (FD+SD) but still many open issues
 - ankle and cut-off interpretation? Sources? Composition at the highest energies? Hadronic interaction models?

> Auger and TA will take data in the next decade

- \circ 6000 km² with full sky coverage
- o mass sensitivity at the highest energies

> new LHC data

excess of ρ^0 production by NA61/Shine - A.E.Hervé, PoS (ICRC15) 330 e.g.: R.Engel ICRC15, T.Pierog UHECR16 (Kyoto)

next generation experiments

- \circ new detection techniques (radio ...)
- \circ fluorescence detection from space

THANKS