Multi-messengers from quasar outflows

Xiawei Wang (advised by Prof. Avi Loeb) ^{May 09, 2017} IPA conference

CfA

Quasar outflows

AGN feedback

Regulate black hole growth & may quench star formation

Observational evidence:

- Broad absorption lines in quasars Ganguly+07, Zakamska & Greene14, Arav+15
- Multi-phase outflows in nearby ultraluminous infrared galaxies (ULIRGs) and quasars Sturm+11, Cicone+14, Tombesi+15
- Post-starburst galaxies

Hydro equations (Furlanetto & Loeb 01, Wang & Loeb 15)

$$\frac{d^2 R_{\rm s}}{dt^2} = \frac{4\pi R_{\rm s}^2}{M_{\rm s}} (P_{\rm t} - P_0) - \frac{GM_{\rm tot}}{R_{\rm s}^2} - \frac{v_{\rm s}}{M_{\rm s}} \frac{dM_{\rm s}}{dt} ,$$

$$\frac{dM_{\rm s}}{dt} = 4\pi m_{\rm p} n_{\rm ISM} R_{\rm s}^2 v_{\rm s} ,$$

$$\frac{dP_{\rm t}}{dt} = \frac{\Lambda}{2\pi R_{\rm s}^3} - 5P_{\rm t} \frac{v_{\rm s}}{R_{\rm s}} ,$$

$$\Lambda = L_{\rm in} - L_{\rm ff} - L_{\rm IC} - L_{\rm syn} - L_{\rm p} ,$$
spherical symmetry
$$\rho_{\rm pl}(R) = \begin{cases} C_{\rm d} R^{-\alpha} \\ C_{\rm h} R^{-\beta} \end{cases} (R \le R_{\rm disc}) \\ (R_{\rm disc} < R \le R_{\rm vir}), \end{cases}$$

 $\alpha = 2$ (isothermal) β determined by baryonic disk fraction f_d

Parameters: f_d , M_h , z

Faucher-Giguere & Quataert 12

Wang & Loeb 15

Non-thermal emission from electrons accelerated in the forward shock (similarly to SN remnants):

- Synchrotron
- Inverse Compton:
 - Quasar's radiation field
 - CMB photons (important at high z)

Detectability:

- Detectable at multi-wavelengths
- Radio signal can be detected up to z~5

Ultra High Energy Cosmic Rays

Gamma-rays

Multi-messengers

Hadronic emission

• Power-law distribution of accelerated protons:

 $N_p \sim E_p^{-\Gamma_p}$

• Neutral pion decay via proton-proton collision:

 $p + p \rightarrow \pi^0 \rightarrow 2\gamma$

• Magnetic field estimated by equi-partition

(Prescriptions following Kelner+06, Aharonian & Atoyan 00)

Wang & Loeb, Nat. Phys., 2016, 12, 1116

Integrated gamma-ray background

$$I(E_{\gamma}) = \iint \Phi(L_{\text{bol}}, z) \frac{\overline{L}_{\gamma}(E_{\gamma}', L_{\text{bol}}, z)}{4\pi D_{\text{L}}^2(z)} \exp[-\tau_{\gamma\gamma}(E_{\gamma}', z)]$$
$$\times \frac{\mathrm{d}V}{\mathrm{d}z \,\mathrm{d}\Omega} \,\mathrm{d}\log L_{\text{bol}} \,\mathrm{d}z$$

Free parameters:

- $\circ f_{kin} fraction of L_{bol} injected$ into the outflow ~ 1-5 %
- $\circ \epsilon_{nt}$ -- fraction of the shock kinetic energy used to accelerate protons ~10%

Extragalactic gamma-ray background

Ajello+ 15

Extragalactic gamma-ray background

Missing component!

Ajello+ 15

Missing component!

Extragalactic gamma-ray background

Missing component!

Extragalactic gamma-ray background

Ajello+ 15

Identification

- Outflows embedded in MW mass halos propagating to 10-kpc scale produce GeV emission of ~ 10³⁸ - 10³⁹ erg s⁻¹
- Only < 0.1% of quasars in the local Universe (z<0.1) host gamma-raydetectable outflows
- Radio counterpart by JVLA, SKA
- Possible candidate: Fermi bubbles
- Source stacking analysis

$$p + p \rightarrow \pi^0 \rightarrow 2\gamma$$

Production mechanism:

- $p + \gamma \rightarrow p + \pi^0 \text{ or } n + \pi^+ (p\gamma)$
- $p + p \to \pi^+ + \pi^- + \pi^0$ (pp) $\circ \pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$ $\circ \pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu$
- $t_{p\gamma} \gg t_{pp}$
- **pp interaction** dominates
- Free parameters *f*_{kin} and *e*_{nt}, no additional parameters

Wang & Loeb, JCAP, 2016, 12, 012

Timescale comparison $t_{p\gamma} \gg t_{pp}$

Production mechanism:

- $p + \gamma \rightarrow p + \pi^0 \text{ or } n + \pi^+ (p\gamma)$
- $p + p \rightarrow \pi^+ + \pi^- + \pi^0$ (pp) $\circ \pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_e + \overline{\nu}_\mu + \nu_\mu$ $\circ \pi^- \rightarrow \mu^- + \overline{\nu}_\mu \rightarrow e^- + \overline{\nu}_e + \nu_\mu + \overline{\nu}_\mu$
- $t_{p\gamma} \gg t_{pp}$
- **pp interaction** dominates
- Free parameters *f*_{kin} and *e*_{nt}, no additional parameters

Wang & Loeb, JCAP, 2016, 12, 012

Cumulative neutrino background

Production mechanism:

- $p + \gamma \rightarrow p + \pi^0 \text{ or } n + \pi^+ (p\gamma)$
- $p + p \to \pi^+ + \pi^- + \pi^0$ (pp) $\circ \pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$ $\circ \pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu$
- $t_{p\gamma} \gg t_{pp}$
- **pp interaction** dominates
- Free parameters *f*_{kin} and *e*_{nt}, no additional parameters

Wang & Loeb, JCAP, 2016, 12, 012

Cumulative neutrino background

Neutrinos

$$p + p \rightarrow \pi^0 \rightarrow 2\gamma$$

$$\pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$$
$$\pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu$$

What's next?

Gamma-ray photons

Neutrinos

Cosmic rays ???

Can all three messengers explained by quasar outflows?

AGN-driven outflows ???

Ultra high energy cosmic rays (UHECRs)

UHECRs

- The maximum energy reaches > 10⁹ GeV during the initial stage of outflow's propagation
- Proton-only composition
- Satisfy the Hillas criterion

Wang & Loeb 17

UHECRs

- The maximum energy reaches > 10⁹ GeV during the initial stage of outflow's propagation
- Proton-only composition
- Satisfy the Hillas criterion

UHECRs

- The maximum energy reaches > 10⁹ GeV during the initial stage of outflow's propagation
- Proton-only composition
- Satisfy the Hillas criterion

Wang & Loeb, PRD, 2017, 95, 063007

No additional parameter tuning! Steeper spectrum

 $p + p \rightarrow \pi^0 \rightarrow 2\gamma$

Neutrinos

$$\pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$$
$$\pi^- \to \mu^- + \bar{\nu}_\mu \to e^- + \bar{\nu}_e + \nu_\mu + \bar{\nu}_\mu$$

Ultra High Energy Cosmic Rays

Protons Heavier elements

Multi-messenger connection

Multi-messenger connection

Summary

Quasar outflows

Multi-messengers

ni

Extragalactic gamma-ray background Cumulative neutrino background

Wang & Loeb, MNRAS, 2015, 453, 837 Wang & Loeb, Nat. Phys., 2016, 12, 1116 Wang & Loeb, JCAP, 2016, 12, 012 Wang & Loeb, PRD, 2017, 95, 063007

Ultra High Energy Cosmic Ray

Thank you!

CfA