Results of DM-Ice17 and the Status of COSINE-100

A Maile Mark

aporatory

Jay Hyun Jo on behalf of DM-Ice and COSINE-100 Collaboration

Yale University

IPA 2017 May 8, 2016

Current Dark Matter Field

arXiv: 1609.06154

- Liquid Xenon detectors provide currently the best sensitivity to spinindependent WIMP scattering
- No other experiments could confirm the dark matter signal: tension with the DAMA result
- More exclusion limits cannot answer this question

DM-Ice17 Experiment

- Located at South Pole
- Two 8.5 Kg Nal(TI) crystals
- Installed: Dec. 2010, Physics run: Jun. 2011 Jan. 2015
- Goals
 - Demonstrate the feasibility of deploying and operating Nal(TI) detectors in the Antarctic ice for a dark matter search
 - *In situ* measurement of the radiopurity of the Antarctic ice at 2450 m depth
 - Study environmental stability
 - First search for annual modulation with Nal(TI) in the Southern Hemisphere

Why the South Pole?

- If found, the same dark matter signal in both hemispheres
- Seasonal variation reversed in phase
 - Opposite muon rate, tagging of muons verified by IceCube/ DeepCore
- Overburden from 2450 m ice (2200 m.w.e.)
 - Negligible environmental radioactivity: ppt ²³⁸U/²³²Th, ppb ⁴⁰K
 - Stable temperature under ice
- Support infrastructure of Amundsen-Scott South Pole Station

- Analysis threshold at 4 keV
- 3 keV peak from ⁴⁰K contamination in the crystals, ~15 keV feature from surface ²³⁸U contamination on the copper encapsulation
- The data are consistent with the null hypothesis in each energy bin

Barbosa de Souza *et al.*, Phys. Rev. D **95**, 032006 (2017)

Annual Modulation Allowed Region

- Comparing sinusoidal modulation to background subtracted event rates
- Maximum likelihood fits for DAMA and DM-Ice17
- Period/phase fixed with 1 year/June 2
- Dark matter modulation amplitudes are consistent at all energies with both **no modulation** and the DAMA signal

Vodulation Amplitude (counts / day / keV / kg)

0.06

0.04

0.02

-0.02

-0.04

DM-Ice17 Exclusion Limit

- The strongest exclusion limit in the Southern Hemisphere
- To test DAMA result, more mass, lower background, and lower analysis threshold are required

COSINE-100

- A joint effort between DM-Ice and KIMS collaboration
- 8 crystals with 106 kg in total
- Located at Yangyang underground laboratory (Y2L), South Korea, with ~700 m rock overburden
- Physics run started
 September 2016

COSINE-100 Shielding Structure

Plastic Scintillators

Crystal Installation

Preliminary

Crystal	Mass	Powder	Alpha Rate	40 K	$^{238}\mathrm{U}$	$^{232}\mathrm{Th}$	Light Yield
	(kg)		(mBq/kg)	(ppb)	(ppt)	(ppt)	$(\mathrm{PEs/keV})$
Crystal-1	8.3	AS-B	3.20 ± 0.08	43.4 ± 13.7	< 0.02	1.3 ± 0.4	14.9 ± 1.5
Crystal-2	9.2	AS-C	2.06 ± 0.06	82.7 ± 12.7	< 0.12	$<\!\!0.6$	14.6 ± 1.5
Crystal-3	9.2	AS-WSII	0.76 ± 0.02	41.1 ± 6.8	< 0.04	0.4 ± 0.2	15.5 ± 1.6
Crystal-4	18.0	AS-WSII	0.74 ± 0.02	39.5 ± 8.3		$<\!0.3$	14.9 ± 1.5
Crystal-5	18.3	AS-C	2.06 ± 0.05	86.8 ± 10.8		2.4 ± 0.3	7.3 ± 0.7
Crystal-6	12.5	AS-WSIII	1.52 ± 0.04	12.2 ± 4.5	< 0.02	0.6 ± 0.2	14.6 ± 1.5
Crystal-7	12.5	AS-WSIII	1.54 ± 0.04	18.8 ± 5.3		$<\!\!0.6$	14.0 ± 1.4
Crystal-8	18.3	AS-C	2.05 ± 0.05	56.2 ± 8.1		<1.4	3.5 ± 0.3
DAMA			< 0.5	< 20	0.7 - 10	0.5 - 7.5	5.5 - 7.5

- 8 crystals with total mass of ~106 kg
- Preliminary background values estimated both at R&D and COSINE setup
- Average light yield ~15 p.e./keV

Crystal-LS Coincidence Events

- ⁴⁰K emits 1460 keV gamma with 3 keV Auger electron energy deposition in Nal crystal
- Tagging 1460 keV events with LS enables to veto 3 keV background events

COSINE-100 High Energy Spectrum

- Gamma spectrum shows pronounce background peaks including 1460 keV from ⁴⁰K
- Dynamic range for high energy signals is > 5 MeV

COSINE-100 Low Energy Spectrum

- 10 days of data, current set of event selection applied (not final!)
- Depending on crystal, background level ~3 dru at the region of interest
- Cosmogenic peaks remain in certain crystals
- There are still room for improvements

COSINE-100 Nal Crystal Simulation

- Work in progress, Geant4 framework
- Using Nal energy spectrum in R&D setup for the first step
- Surface ²¹⁰Pb is suspected to be the dominant background, followed by ⁴⁰K internal to crystal

COSINE-100 Projected Sensitivity

- 2-4 dru flat background is assumed
- 2 years of data with 1 keV analysis threshold will give comparable sensitivity with DAMA's 90% C.L allowed region
- If observed, 600 kg·years of data will give ~7 sigma result (2 dru bkg assumed)

Conclusion

- WIMP interpretation of DAMA signal is in tension with other experiments: Independent Nal(TI) experiments are needed
- DM-Ice17
 - DM-Ice17 demonstrates South Pole as viable underground location for dark matter experiments
 - DM-Ice17 set the strongest Southern Hemisphere dark matter exclusion limit
- COSINE-100
 - COSINE-100 is running with 108 kg of Nal(TI) crystals, with lower backgrounds and better technology
 - Initial performances of COSINE-100 are promising, expecting to have DAMAcomparable sensitivity in ~2 years
- Very exciting time for Nal dark matter search...stay tuned!

Interpretation of the DAMA Result

DM-Ice17 Det

0.15

0.1

0.05

Contamination

⁴Detector Concerts of Concer

Material	⁴⁰ K	232 Th	$^{238}{ m U}$	$^{238}{ m U}$	$^{235}\mathrm{U}$	⁶⁰ Co
			$(^{234}{ m Th})$	(^{226}Ra)		
Quartz Light Guides	0.50 ± 0.03	< 4.9	1:	2	•••	••••
ETL 9390B PMT	9300	1000	2400			
Steel Pressure Vessel *	13.77 ± 6.38	6.49 ± 0.96	118.31 ± 60.11	2.28 ± 0.72	8.79 ± 1.68	7.19 ± 0.82
Drill Ice *	3.71 ± 1.36	0.55 ± 0.17	6.69 ± 3.02	0.39 ± 0.14	0.38 ± 0.21	0.12 ± 0.05
Silicone Optical Gel * †	39.50 ± 18.60	< 0.12	2.08 ± 1.10	38.50 ± 61.00	0.96 ± 1.30	0.32 ± 0.42
PTFE Supports * †	0.34 ± 5.09	0.52 ± 0.44	< 0.41	24.46 ± 21.37	1.92 ± 0.72	< 0.089
Copper Plate * [†]	< 5.13	$<\!1.22$	0.17 ± 0.92	< 0.67	3.56 ± 1.79	< 0.12
Glacial Ice [†]	$\sim 3 \times 10^{-4}$	$\sim 4 \times 10^{-4}$	~ 10	$)^{-4}$		

Crystal

Isotope	Subchain	Activity	
		$(\mathrm{mBq/kg})$	
40 K		17	
129 I		1	
232 Tb	232 Th	$ \begin{array}{r} 1 \\ 0.01 \\ 0.16 \\ 0.017 \\ \end{array} $	
1 11	228 Ra $^{-208}$ Tl	0.16	
	$^{238}\mathrm{U}-^{234}\mathrm{Pa}$	0.017	
23811	$^{234}\mathrm{U}-^{230}\mathrm{Th}$	0.14	
U	226 Ra $^{-214}$ Po	0.90	
	$^{210}{\rm Pb}-^{210}{\rm Po}$	1.5	

Jay Hyun Jo

DM-Ice17 Temperature Stability

- Ice environment provides stable temperature
 - Fast decrease during freeze-in
 - Slower decrease over a few months after freeze-in
 - < 0.025°C daily RMS
- PMT gain stability: <2% in 2 years, smaller than energy resolution

Cherwinka et al., Phys. Rev. D 90 (2014) 092005

Cherwinka *et al*., Phys. Rev. D **90** (2014) 092005

- Resolution assessed from ⁵/₆
 same background peaks giving calibration
- Comparable resolution to other similarly sized Nal experiments

Event Types

DM-Ice17 Background Model

- β/γ separated from alpha with PSD
- Well matched by background model
- Largest contamination from crystals and PMTs at <100 keV due to U/Th/K
- Negligible contribution from the ice

DM-Ice17 Background Model: Low Energy Region

- Below 5 keV, background is dominated by
 - 40 K and 210 Pb in Nal(Tl)
 - PMTs
 - Surface ²¹⁰Pb and Light guides
- 7.9±0.4 dru observed between 6.5-8 keV

Cherwinka et al., Phys. Rev. D 90 (2014) 092005

COSINE-100 Crystal-PMT Assembly

- OFE Cu-encapsulated Nal crystal is attached with two 3-inch PMTs
- PMT: R12669 from Hamamatsu, 35% Quantum Efficiency at 420 nm
- Outer surface of crystal and PMT cap is wrapped with Vikuiti reflective films

Crystal PMT Waveforms

- The same events read in two channels: Anode and Dynode
 - Anode signal with waveform sensitivity at single-photon level: Primary channel for dark matter search
 - **Dynode** signal for high energy events: helps in understanding better the internal backgrounds in the crystals

Resolution @ 60 keV

Crystal 3 Anode Charge Sum, 1_5 µs Window

Am-241 ADC sum (Anode) Am-241 ADC sum (Dynode)

Calibration/Light yield calculation

- ²⁴¹Am source (60 keV gamma) used to calibrate PMTs
- Gain is matched to have 60 keV peak at the mid-range of FADC dynamic range
- Single Photoelectron spectrum were fitted to calculate PMT light yield

Yale

LS for COSINE-100

Linear alkylbenzene (LAB) : Good optical/radioactive properties 2,5-Diphenyloxazole (PPO) : fluor, scintillator/wavelength shifter p-bis-(o-methylstyryl)-benzene (bis-MSB) : wavelength shifter

Purification Setup

(Humidity removal)

3000 liters of liquid scintillators

This background of the liquid scintillator contributes negligible amount to the crystal (<0.01 dru)

Ready to be filled

COSINE-100 Event Selection

 Looking at charge ratio between rising edge and falling edge of a pulse gives good noise separation power

COSINE-100 Event Selection

Gamma

- Additional noise reduction cuts have been developed:
 - Charge asymmetry between 2 PMTs in each crystal
 - Charge/peak: Average charge per SPE

Pulse Shape Discrimination for Alpha

- Pulse Shape Discrimination technique works well for alpha separation
- Using charge-weighted mean time
- With separated alpha events, estimation of ²¹⁰Po background can be performed
 - 0.5~3 mBq/kg for COSINE-100 crystals

Examples of Signal Events (Anode Channel)

Low Energy Spectrum

- 10 days of data, current set of event selection applied (not final!)
- Depending on crystal, background level ~3 dru at the region of interest
- Cosmogenic peaks remain in certain crystals
- There are still room for improvements

COSINE-100 Low Energy Spectrum (< 20 keV)

Average charge/SPE cut

Crystal growing in Korea

- A special Kyropoulos machine is under consideration
- Whole procedure can be done by ourselves

Speed up the R&D of background reduction

H. Lee, IDM2016