

Recent NOvA Experiment Results

Leon Mualem For the NOvA Collaboration Caltech May 8, 2017

NOvA Experiment

Ash River, MNovAfar Detector 810 km from Fermilab

Minnesota

Wisconsin

Madison

Far detector on the surface and slightly off the beam axis

nole'

Caltech

Milwaukee NuMI beam at up to 700 kW and Near detector 100 m underground

Fermilab Accelerator Complex 2012

© 2007 Europa Technologies Image © 2007 TerraMetrics Image © 2007 NASA

Fermilab

Chicago

Fermilab

treaming IIIIIIII 100%

- 700kW running achieved routinely in FY17
- Antineutrino running
 - ~July 2016 for tuning
 - Feb 20, 2017
 until ~summer
 shutdown
 planned for
 6/24/2017

NOvA Detectors:

- Fine-grained, low-*Z*, highlyactive tracking calorimeters
- 11 M liters of scintillator
- λ -shifting fiber and APDs

Event Topologies

- Muon Neutrino Charged Current
- Electron
 Neutrino
 Charged
 Current
- Neutrino
 Neutral
 Current

5

Muon Neutrino Disappearance

- Spectrum predicted in absence of oscillations has 473 events
- Observed spectrum has 78 events

Muon Neutrino Disappearance

- Energy spectrum of 78 selected events
- Small
 background
 determined by
 extrapolation
 from near
 detector data

Muon Neutrino Disappearance

 Background subtracted ratio to unoscillated prediction

Mixing parameter measurements

- Measurements:
- $\Delta m_{32}^2 = 2.67 \pm 0.11$
- $sin^2\theta_{23} =$ 0.404^{+0.030}_{-0.022}(0.63^{+0.022}_{-0.030})
- Excludes maximal mixing at 2.6σ

Newly developed CVN classifier for electron neutrino events

- Machine learning technique used to select electron neutrino events and predict background
- Deeper description
 - A. Aurisano and A. Radovic and D. Rocco et al.
 JINST 11 P09001 (2016)
- Results arXiv:1703.03328v1

CVN Classifier

- Use CVN classifier with near detector data to measure and extrapolate backgrounds expected at the far detector.
- Also use to predict oscillated electron neutrino signal
- Increases sensitivity compared to previous selection techniques

Electron Neutrino Appearance

- New Results using CVN technique found 33 events in 6.05E20 Protons on Target in the NuMI beamline
- Background of 8.2+-0.8

Combined fit results

 Combined fit with muon disappearance measurements disfavoring inverted mass ordering

13

Conclusions

- Detectors are running well
- Data taking very efficient, 99%+ typical beam weeks
- Beam running well, hitting new records
 - Routinely over 700kW to NOvA
- New results have been interesting
- Anti-Neutrino data coming in now until the Summer Shutdown
 - Ready for this after 1 month of Anti-Neutrino running in FY16
- Additional analyses and improvements are actively being developed for the interesting times ahead

NOvA Collaboration

Need for antineutrinos:

If we are in lower octant, normal hierarchy, antineutrinos are required.

23

Caltech

16

Backup: Max mixing comparison

NOvA Preliminary

