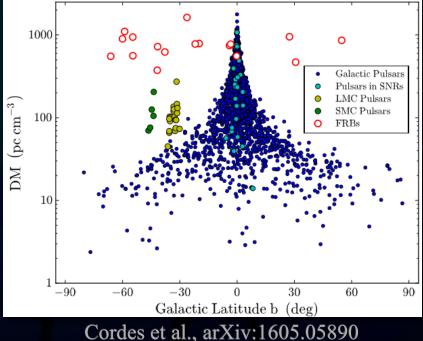
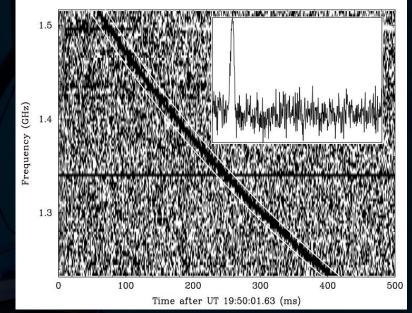
Search for High-Energy Neutrino Emission from Fast Radio Bursts

Samuel FaheyDonglian Xu, Ali Kheirandish, and Justin VandenbrouckeFor the IceCube CollaborationIPA 2017 – Neutrino Astronomy II parallel session
May 8th, 2017



Fast Radio Bursts (FRBs)


- 21 FRB sources discovered; all-sky rate ~3,000 events/day
 - One source has repeated more than 100 times
- Bright radio emission for $< 5 \text{ ms} \rightarrow \text{compact source}$
- Time delay of low frequency components consistent with dispersion in interstellar plasma

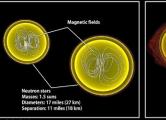
Dispersion Measure (DM): the integrated column density of free electrons measured along line of sight.

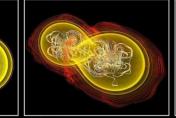
- DMs are larger than the Milky Way alone could provide
- Distribution consistent with that of a uniformly filled Euclidean space → likely extragalactic

Atitude b (deg) Xiv:1605.05890

Lorimer et al., Science 318 (5851): 777-780

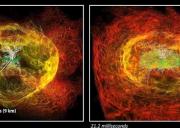
IPA 2017 | May 8thSearch for Neutrino Emission from FRBs | Sam Fahey


Models for FRBs

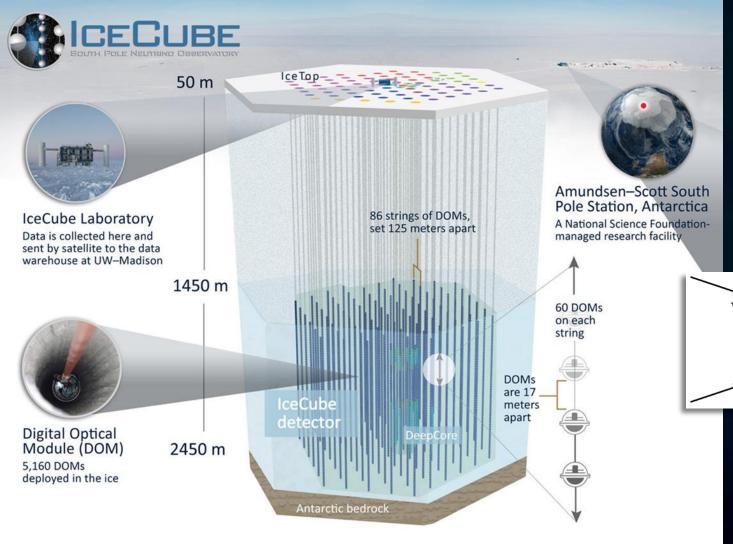

• Blitzars

[H. Falcke and L. Rezzolla, A&A 562, A137 (2014)]

- Binary neutron star mergers [T.Totani, Pub. Astron. Soc. Jpn. 65, L12 (2013)]
- Evaporating primordial black holes [Halzen et al., PRD 1995]
 - "MeV neutrinos" \rightarrow IceCube's Supernova stream
- Pulsars passing through asteroid belts [J. J. Geng and Y. F. Huang, ApJ 809, 24 (2015)]
- Magnetar/SGR hyperflares [S.B. Popov and K.A. Postnov, arXiv:1307.4924] [Halzen et al. (2005) asto-ph/0503348]
 - "TeV neutrinos"? \rightarrow This analysis
- No concrete neutrino production models yet

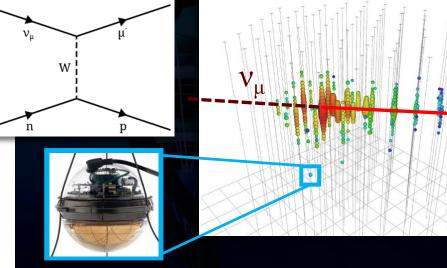

IPA 2017 | May 8th Search for Neutrino Emission from FRBs | Sam Fahey

'Cataclysmic'



Allow Repeating

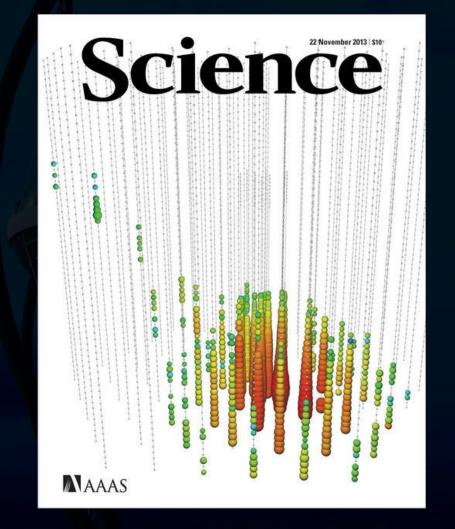
Models



IceCube Neutrino Observatory

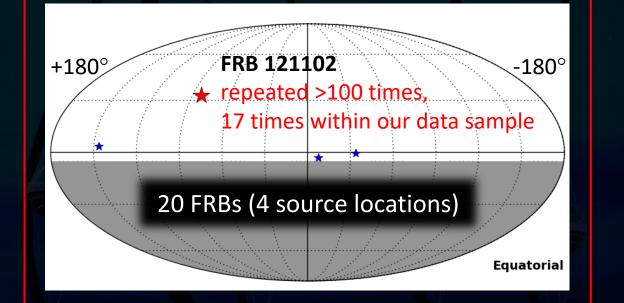
- km³ detector observes neutrinos with energy above ~10 GeV
- PMT array detects Cherenkov radiation from secondary particles from in-ice interactions
- Muons create long tracks with angular resolution <1° at high energies

ARTICLE ASTROPHYSICS CENTER

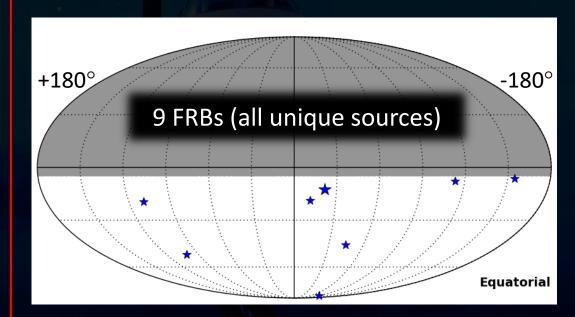

IPA 2017 | May 8thSearch for Neutrino Emission from FRBs | Sam Fahey

IceCube's Astrophysical Neutrino Flux

- IceCube observed an astrophysical v_{μ} flux
 - Excluded purely atmospheric origin at 5.6σ significance


["Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere Using Six Years of IceCube Data" Aartsen *et al.* ApJ 833, 1 (2016)]

- No source of astrophysical neutrinos has yet been identified
 - Gamma-ray bursts show no significant correlation with high-energy neutrino events
 - Blazars and star-forming galaxies are also disfavored


Event Samples & FRBs NORTH (δ>-5°)

- 842,597 events from 2011 2016
 - 6 mHz in hemisphere
- Dominated by atmospheric neutrinos

SOUTH (δ<-5°)

- 379,261 events from 2010 2015
 - 2.5 mHz in hemisphere
- Dominated by atmospheric muons

Total sample of 1.2 million events in 6 years

IPA 2017 | May 8th Search for Neutrino Emission from FRBs | Sam Fahey

- Analysis Method: Unbinned Maximum Likelihood
- The likelihood of observing N events with properties $\{x_i\}$ for $(n_s + n_b)$ expected events is

$$\mathcal{L}(N, \{x_i\}; n_s + n_b) = P_{Poisson}(N; n_s + n_b) \left[P(x_i) \right]$$

• The normalized probability of observing an event with properties x_i is $P(x_i)$:

$$P(x_i) = \frac{n_s S(x_i) + n_b B(x_i)}{n_s + n_b} \qquad S_i = S_{\text{time}}(t_i) \cdot S_{\text{space}}(\vec{x}_i) \qquad \text{No energy} \\ B_i = B_{\text{time}}(t_i) \cdot B_{\text{space}}(\vec{x}_i) \qquad \text{dependence} \end{cases}$$

$$T \coloneqq \ln \frac{\mathcal{L}(N, \{x_i\}; n_s + n_b)}{\mathcal{L}_0(N, \{x_i\}; n_b)}$$

IPA 2017 | May 8thSearch for Neutrino Emission from FRBs | Sam Fahey

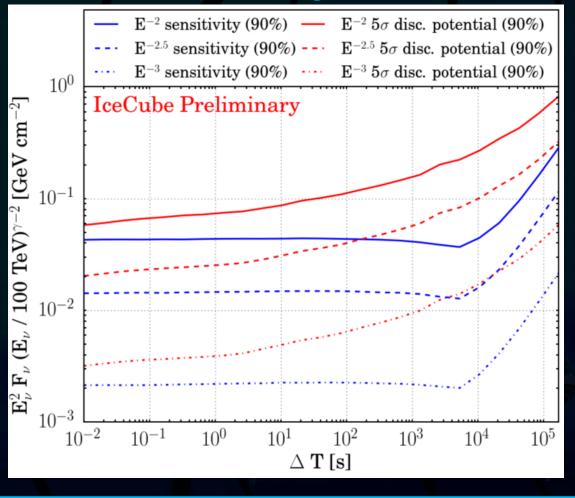
l=1

Search Strategies

Testing two hypotheses in parallel:

• Stacking Search: Does this source class emit neutrinos?

- Method: Evaluate correlation of event sample with all FRBs in hemisphere
- Detect sub-threshold emission from multiple sources
- Max-Burst Search: Does any of the sources emit neutrinos?
 - Method: Evaluate correlation of event sample with each FRB independently
 - Detect significant emission from strongest source


Expanding time windows:

- Evaluate each test for events in a time window centered on each FRB
- 25 windows: ± 5 ms, ± 10 ms, ± 20 ms, ..., ± 0.97 days

Sensitivity & Discovery Potential: North

Northern Stacking Sensitivities

Northern Max-Burst Sensitivities- E^{-2} sensitivity (90%) - E^{-2} 5 σ disc. potential (90%)- $E^{-2.5}$ sensitivity (90%) - $E^{-2.5}$ 5 σ disc. potential (90%) 10^0 E^{-3} sensitivity (90%) - E^{-3} 5 σ disc. potential (90%) 10^{-1} 10^{-1} 10^{-1}

 10^{2}

 $\Delta T [s]$

 10^{3}

 10^{4}

 10^{5}

IPA 2017 | May 8th Search for Neutrino Emission from FRBs | Sam Fahey

9

-3

[GeV cm

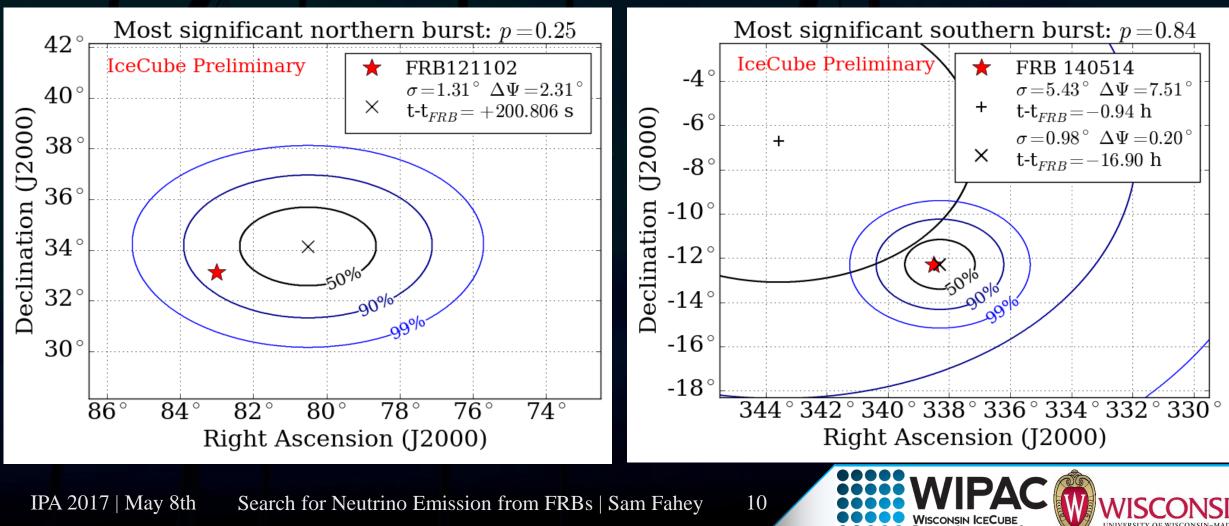
(100 TeV)

 $\mathbf{E}_{
u}^{2} \mathbf{F}_{
u}$ ($\mathbf{E}_{
u}$

 10^{-2}

 10^{-3}

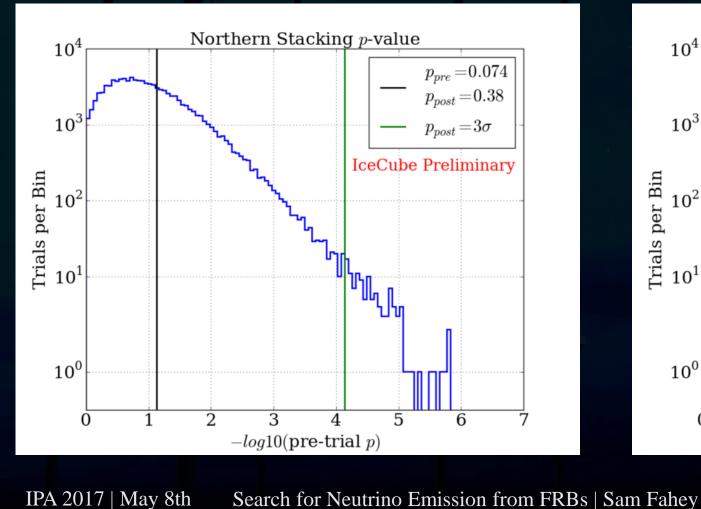
 10^{-2}

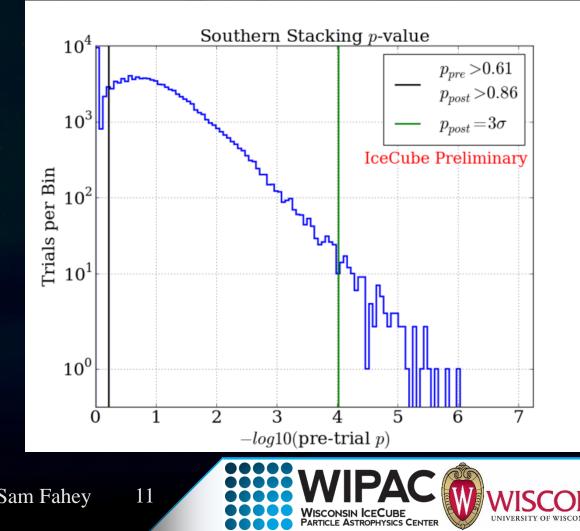

 10^{-1}

 10^{0}

 10^{1}

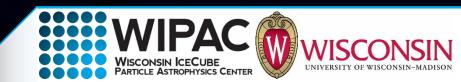
Results: Max-Burst Search


• Max-burst p-values are consistent with background: North: pre-trial p = 0.034; p = 0.25South: pre-trial p = 0.41; p = 0.84



Results: Stacking Search

 Stacking p-values are consistent with background: North: pre-trial p = 0.074; p = 0.38
 South:



Conclusion and Outlook

- In a search for high-energy track events coincident with 29 FRBs from May 2010 to May 2016, no significant signal was observed.
- Future Upgrades:
 - Update analysis for FRBs observed since analysis began, and
 - Allow for quicker analysis of newly discovered FRBs
 - E.g., CHIME expects to observe >10 FRBs *per day* once online in 2017
 - Include cascade events: angular resolution O(10°), but still sensitive in small ΔT
- Low-energy search: We are searching for low-energy neutrino emission from FRBs via IceCube's Supernova stream, which detects rises in the overall PMT rate due to low-energy neutrino events

12

• Temporal coincidence of PMT rate with FRB arrival times?

Backup

IPA 2017 | May 8th Search for Neutrino Emission from FRBs | Sam Fahey

Effective Area at FRB Declinations

- Harder cuts in the southern hemisphere reduce muon contamination at the expense of effective area
- In the northern hemisphere, FRBs north of the equator lose effective area at high energies due to Earth absorption.

IPA 2017 | May 8th

Search for Neutrino Emission from FRBs | Sam Fahey

Northern Source List (page 1 of 2)

Bursts 💌	Time[YYYY/MM/DD]	Duration [ms]	RA 🖂	DEC м	Telescope 🗾	IceCube Seasons 📕
FRB 110523	2011/05/23 15:06:19.738 UTC	1.73	-00 ⁰ 12'	21h45'	Green Bank RT	IC86-2011
FRB 110703	2011/07/03 18:59:40.591 UTC	<4.3	-02 ⁰ 52'	23h30'	Parkes HTRU	IC86-2011
FRB 130628	2013/06/28 03:58:00.02 UTC	<0.05	03 ⁰ 26'	09h03'	Parkes HTRU	IC86-2013
FRB 121102 b0 **repeated**	2012/11/02 06:47:17.117 UTC	3.3	33°05'	05h32'	Arecibo RT	IC86-2012
FRB 121102 b1	2015/05/17 17:42:08.712 UTC	3.8	33°08'	05h32'	Arecibo RT	IC86-2014
FRB 121102 b2	2015/05/17 17:51:40.921 UTC	3.3	33 ⁰ 08'	05h32'	Arecibo RT	IC86-2014
FRB 121102 b3	2015/06/02 16:38:07.575 UTC	4.6	33 ⁰ 08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b4	2015/06/02 16:47:36.484 UTC	8.7	33 ⁰ 08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b5	2015/06/02 17:49:18.627 UTC	2.8	33°08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b6	2015/06/02 17:49:41.319 UTC	6.1	33 ⁰ 08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b7	2015/06/02 17:50:39.298 UTC	6.6	33°08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b8	2015/06/02 17:53:45.528 UTC	6.0	33 ⁰ 08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b9	2015/06/02 17:56:34.787 UTC	8.0	33 ⁰ 08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b10	2015/06/02 17:57:32.020 UTC	3.1	33°08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b11	2015-11-13 08:32:42.375 UTC	6.73	33°08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b12	2015-11-19 10:44:40.524 UTC	6.10	33°08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b13	2015-11-19 10:51:34.957 UTC	6.14	33°08'	05h32'	Arecibo RT	IC86-2015
FRB 121102 b14	2015-11-19 10:58:56.234 UTC	4.30	33°08'	05h32'	Arecibo RT	IC86-2015

IPA 2017 | May 8th

Search for Neutrino Emission from FRBs | Sam Fahey

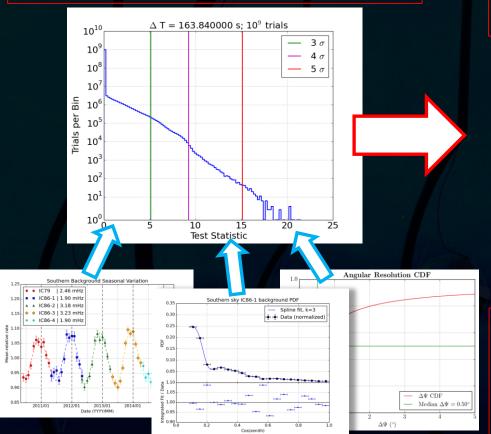
Northern Source List (page 2 of 2)

FRB 121102 b15	2015-11-19 11:05:52.492 UTC	5.97	33 ⁰ 08'	05h32'	Arecibo RT	IC86-2015	
FRB 121102 b16	2015-12-08 04:54:40.262 UTC	2.50	33 ⁰ 08'	05h32'	Arecibo RT	IC86-2015	
FRB 121102 b17	2016-08-23 17:51:23.921 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
FRB 121102 b18	2016-09-02 16:19:00.221 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
FRB 121102 b19	2016-09-02 16:41:01.770 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
FRB 121102 b20	2016-09-07 11:59:05.944 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
FRB 121102 b21	2016-09-12 10:58:30.947 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
FRB 121102 b22	2016-09-14 10:18:36.232 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
FRB 121102 b23	2016-09-15 11:11:02.962 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
FRB 121102 b24	2016-09-17 10:29:09.447 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
FRB 121102 b25	2016-09-18 10:50:31.802 UTC	<5	33 ⁰ 08'	05h32'	VLA	IC86-2016	Not in analysis
LOFAR North Pole burst	2011-12-24 04:33 UTC	660 s (long burst)	86º21'46.4"	22h53'47.1"	LOFAR	IC86-2011	Only in Max-burst test

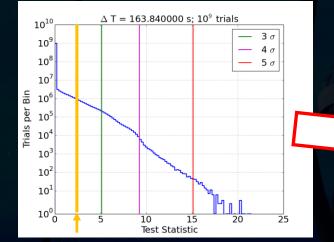
• Inclusion of the LOFAR radio burst (https://arxiv.org/pdf/1512.00014v1.pdf) in the source list was suggested and approved by the Transients working group. The LOFAR burst will not be included in the stacking test, as it is not a member of the FRB source class.

IPA 2017 | May 8th Search for Neutrino Emission from FRBs | Sam Fahey

Southern Source List

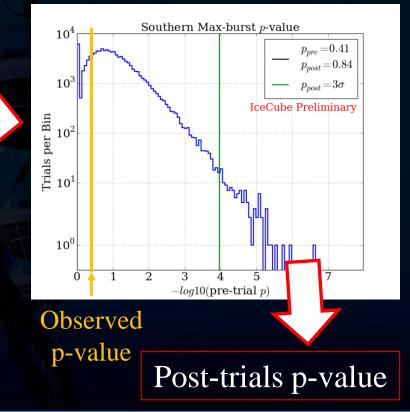

Bursts M	Time[YYYY/MM/DD]	Duration [ms] 🗹	RA 💌	DEC M	Telescope 💌	IceCube Seasons 🗵
FRB 010621	2001/06/21 13:02:10.795 UTC	7.8	18h52'	-08°29'	Parkes	Before IceCube
FRB 010724	2001/07/24 19:50:01.63 UTC	4.6	01h18'	-75°12′	Parkes	Before IceCube
FRB 011025	2001/10/25 00:29:13.23 UTC	9.4	19h07'	-40°37′	Parkes	Before IceCube
FRB 090625	2009/06/25 21:53:52.85 UTC	<1.9	03h07'	-29°55′	Parkes	Not in analysis
FRB 110220	2011/02/20 01:55:48.957 UTC	5.6	22h34'	-12°24′	Parkes	IC79(-2010)
FRB 110627	2011/06/27 21:33:17.474 UTC	<1.4	21h03'	-44°44′	Parkes	IC86-2011
FRB 120127	2012/01/27 08:11:21.723 UTC	<1.1	23h15'	-18°25′	Parkes	IC86-2011
FRB 121002	2012/10/02 13:09:18.402 UTC	2.1; 3.7	18h14'	-85°11′	Parkes	IC86-2012
FRB 130626	2013/06/26 14:56:00.06 UTC	<0.12	16h27'	-07°27'	Parkes	IC86-2013
FRB 130729	2013/07/29 09:01:52.64 UTC	<4	13h41'	- <mark>05°59</mark> '	Parkes	IC86-2013
FRB 131104	2013/11/04 18:04:01.2 UTC	<0.64	06h44'	-51°17′	Parkes	IC86-2013
FRB 140514	2014/05/14 17:14:11.06 UTC	2.8	22h34'	-12°18′	Parkes	IC86-2014
FRB 150418	2015/04/18 04:29:05.370 UTC	0.8	07h16'	-19° 00'	Parkes	IC86-2014
FRB 150807	2015/08/07 17:53:55.78 UTC	0.35	22h40'	-55°16′	Parkes	Not in analysis

IPA 2017 | May 8thSearch for Neutrino Emission from FRBs | Sam Fahey



Finding a p-value from the TS

Construct a background TS distribution from Monte Carlo



Compare real observed TS to background for a pre-trial p-value

Observed TS

This is done separately in every time window The lowest p-value is our observed pre-trial p-value The p-value is compared to background trials to account for a time-windows induced trials factor

IPA 2017 | May 8th Search for Neutrino Emission

Background PDFs used in Monte Carlo

Search for Neutrino Emission from FRBs | Sam Fahey