What can/can’t Glashow events tell us?

Existence, yes; Resonometry, no.

Tom Weller

Vanderbilt University
Nashville, TN

WIPAC May 2017 Tom Weiler, Vanderbilt University




Neutrinos carry three types of information:

(1) Direction
(2) Energy
(3) Flavor

All three have interesting features.
Glashow events can come from anywhere,
but have a fixed energy, fixed flavor.
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Glashow (1960) events:
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FIG. 1: Cross sections for the resonant process, v, + ¢~ — W~ — hadrons, and the non-resonant

process, Ve + N — e~ + hadrons, in the 1-10 PeV region.
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Eg. p-gamma makes e-nu’s,

no e-antinu’s

For example, in idealized p<y interactions, the process

7 +n 1/3 of all cases
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will lead, after pion decay
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We study the Glashow resonance v, + e~ — W~ — hadrons at 6.3 PeV as diagnostic of the
production processes of ultra-high energy neutrinos. The focus lies on describing the physics of
neutrino production from pion decay as accurate as possible by including the kinematics of weak
decays and Monte Carlo simulations of pp and p7y interactions. We discuss optically thick (to
photohadronic interactions) sources, sources of cosmic ray nuclei, and muon damped sources. Even in
the proposed upgrade [ceCube-Gen2, a discrimination of scenarios such as pp versus py is extremely
challenging under realistic assumptions. Nonetheless, the Glashow resonance can serve as a smoking
gun signature of neutrino production from photohadronic (A7) interactions of heavier nuclei, as the
expected Glashow event rate exceeds that of pp interactions. We finally quantify the exposures for
which the non-observation of Glashow events exerts pressure on certain scenarios.
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Abstract. High energy neutrinos have been detected by IceCube, but their origin remains a
mystery. Determining the sources of this flux is a crucial first step towards multi-messenger
studies. In this work we systematically compare two classes of sources with the data: galactic
and extragalactic. We build a likelihood function on an event by event basis including energy,
event topology, absorption, and direction information. We present the probability that each
high energy event with deposited energy Egy., > 60 TeV in the HESE sample is galactic,
extragalactic, or background. The galactic fraction of the astrophysical flux has a best fit
value of 0.07+8:8g and zero galactic flux is allowed at 1.20.



Xgalactic is way favored:

Figure 4. The log likelihood ratio scan —2log L( fga )/ L( fga| ). We find the best fit point at fga| =

0.066 and fgai = 0 is allowed at 1.20.
WIPAC May 2017 Tom Weiler, Vanderbilt University




e-antinu mean free path in Earth, and the sagitta:

[ 110km in mantle rock ,
1
/\l_/e ~ n' Upeak o < (18)
¢ Res | 310km in ice.

The width in E,,, and therefore the bulk of the absorp-
tion, extends from 6.3 PeV to £(2I'y ) /Mw E,, the latter
equals to £0.3 PeV. This short mfp, traceable to the large
resonance cross section, tells us that the 7. absorption by
Earth matter at the Glashow energy of 6.3 PeV is consid-
erable. Using the Sagitta relationship between the depth
z of IeceCube and the length of the horizontal burden h,
h = \/2Rg2, one finds an h of 113-160 km for the Ice-
Cube depth 1-2 km, well matched to the 7. mfp. The ab-
sence of significant overburden, the relatively short mfp
of Glashow 7.’s, and the large solid angle imply that the
Glashow events come mainly from horizontal directions.
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lceCube effective areas (averaged over 4pi):
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The “Resonometer’ of Cosmic Nu Source Models:

Barger, Fu, Learned, Marfatia, Pakvasa, TJW,

PRD90, 121301 (2014).

TABLE I: Neutrino flavor ratios at source, component of 7, in total neutrino flux at Earth after

mixing and decohering, and consequent relative strength of Glashow resonance, for six astrophysical

models. (Neutrinos and antineutrinos are shown separately, when they differ.)

(Kaons change little,

but source environment

matters)
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Source flavor ratio | Earthly flavor ratio | 7, fraction in flux (R)

pp — 7 pairs (1:2:0) (1:1:1) 18/108 = 0.17

w/ damped p* (0:1:0) (4:7:7) 12/108 = 0.11

py— 7wt only | (1:1:0) | (0:1:0) [(14:11:11)| (4:7:7) 8/108 = 0.074

w/ damped pt| (0:1:0) | (0:0:0) (4:7:7) (0:0:0) 0

charm decay (1:1:0) (14:11:11) 21/108 = 0.19

neutron decay | (0:0:0) [ (1:0:0) (0:0:0) | (5:2:2) 60/108 = 0.56
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Neutrino at Earth is affected by the transition amplitude
Apsp = Zj Uaje_zE"JL Ujs. Over large astronomical
distances, the oscillating interference terms average out,
and one obtains a (3-flavor x 3-flavor) probability matrix

Pla— B) = |Uajl’|Ujsl*, relating ¢/ =Pg. (4)

J

In the TBM model, the probability elements are given by

1 10 4 4
prBM(CE — ‘B) = 13 4 7 7 (5)
4 7 7
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For the charged pion decay chains, we immediately find

from Eq. (6)
. 1 2 2
™ = eTvy,b, mix ¢ = =3Xg=57 (9)
1 5 2 7
T e 1/81/”1/“—”35 _§ (§+5)=E(10)

We observe from the ratio of the two processes that the
7~ decay chain yields 7/2 times more Earthly 7. than
the 77 decay chain. From a different perspective, the
Glashow event rate from the 7 decay chain is potentially
contaminated by m~ production (if present at the source),
namely ~ 7/2 times the fraction 7= /7.
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GLASHOW CANNOT DISCRIMINATE MYRIAD POSSIBILITIES !

But, nu’'s are probably made in environments with
a) some optical thickness,

b) possible heavy nuclei source

(not proton primaries), => negative pions via

T~ +p 1/3 of all cases
7 +n  2/3 of all cases

n—l—’}—)AO—){

and may have
c) muon damping of the pion DK chain.

GLASHOW CANNOT UNAMBIGUOUSLY DISCRIMINATE
AMONG THE MYRIAD POSSIBILITIES.
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FIG. 3: Left panel: expected number of Glashow events as a function of exposure for the GRB case for varying optical thickness
to photohadronic interactions Tp~. As the luminosity in the burst increases, the optical thickness increases as well, leading to an
increasing contamination by m— . Right panel: neutron to proton ratio as a function of the energy for different luminosities. At
the Glashow energy (the vertical band indicates the corresponding primary energy), the ratio scales linearily with the luminosity,
saturating at approzimately 30% for L = 10°* erg/s.
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Single vs. Double power-law fits suggest a new source

at higher energy:

arxXiv:1611.07905,

Anchordoqui, Block,

Durand, Ha, Soriano,
Weliler
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No Glashows begin to be problematical:
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FIG. 14: Histogram of events, predicted and measured, includ-
ing prompt events (showers).



Glashows may receive
help from lceCube Expect 5-10 increase 1n effective area,

Gen-2: => 5-10 increase in EVENT RATE:

INCREASE IN VOLUME AND PROJECTED AREA
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There is evidence of new astro-nu source;
and there is evidence that astro-nut are Xgal;
and Glashows are due to show about NOW;
but,

GLASHOW RESONOMETER TO UNAMBIGUOUSLY
DISCRIMINATE AMONG THE MYRIAD POSSIBILITIES

IS UNLIKELY.



Extra Slides
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Glashow’s peak:

peak _ 24TB(W~ - p.e”) BW~ — had)
Res MZ,

3.4 x 1073 em?.
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J.G.Learned and T.J. Weiler, arXiv:1407.0739

Neutrino Energy Maximum:

my MPlanck
Mweak

m, MPlanck 247 GeV
= 25 ( ) PeV .
0.05eV (1.2><10286V>( Vwwonk > °

max
EV

In what frame?

Nature provides THE preferred frame, the Cosmic Rest Frame.
So B =
can be written as ugRF (p™ax)8 - where UERF = (1,0).

And (pf/nax)ﬂ transforms as usual four-vector.
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Neutrino maximum energy (cont.)

another way:

Weingberg's neutrino-mass generating operator,

vev 2

A

1
~(HL)(HL) => m, =

—

vev
m, ~ ————o,
v McuT

E, PeV M M
=& (1) () ().
Y vev [= vev

M
~ 10% x 107% x (—P>

vev
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The End of the Neutrino Sp@@tmm
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STRAWMAN DETECTOR

120 additional strings
length 1.3 km

average spacing 240 m
volume 9.7 km?
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Glashow Resonance - Formulas:

)

N N. dF;
( ) = 2 (rMwTw) ohes”
Res B, =6.3PeV

m 2m€ dE,je

peak  24mB(W™ — Dee™ ) B(W™ — had)

oRo = e = 3.4 x 10*'em?.
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Glashow event rates vs. continuum:

TABLE II: Ratio of resonant event rate around the 6.3 PeV peak to non-resonant event rate abowvt
Emn — 123, 4, 5 PeV. The single power-law spectral index a is taken to be 2.0 and 2.:
for the non-parenthetic and parenthetic values, respectively. As an example, the single power-law
extrapolation from the three events observed just above 1 PeV predicts a mean number of observec
resonance events around 6.3 PeV equal to the first numerical column times 3.
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E™in (PeV) 1 2 3 4 5
pp — 7= pairs | 0.33 (0.29) | 0.50 (0.53) | 0.64 (0.77) | 0.76 (1.0) | 0.87 (1.2)
damped g | 0.22 (0.18) | 0.33 (0.34) | 0.42 (0.50) | 0.49 (0.64) | 0.56 (0.79)
py — 7t only | 0.14 (0.12) | 0.22 (0.23) | 0.28 (0.33) | 0.33 (0.43) | 0.38 (0.53)
damped p™* 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
charm decay | 0.37 (0.32) | 0.56 (0.60) | 0.72 (0.86) | 0.85 (1.1) | 0.98 (1.4)
neutron decay | 1.1 (0.94) 1.7 (1.8) 2.1 (2.5) 2.5 (3.3) 2.9 (4.0)
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