Reactor Neutrinos Recent Results and Future Prospects

Karsten M. Heeger Yale University

May 9, 2017

Yale Wright Laboratory

Neutrino Sources

A Tool for Discovery

2012 - Measurement of θ_{13} with Reactor Neutrinos

EH1 EH2 KamLAND 0.95 EH3 0.4 0.6 0.8 1.2 1.4 1.6 1.8 0 02 1 Weighted Baseline [km] Va €00000 ₩ 50000 \$ 40000 A 30000 20000 rompt Reconstructed Energy [MeV 10000 0.95 0.5 0.85 6 8 10 1 Prompt Reconstructed Energy [MeV] - EH1 - EH2 - EH3 Bost fit 0.2 0.4 0.6 L_{eff} / E_v [km/MeV] 0.8 100

a story of varying baselines...

З

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1956 - First observation of (anti)neutrinos

Physics with Reactor Antineutrinos

Searches for New Physics

neutrino magnetic moment and coherent scattering searches

Reactor Monitoring and Application fuel burnup and isotopic composition

 L_0/E_v (km/MeV)

Karsten Heeger, Yale University

\overline{v}_{e} from β -decays, pure \overline{v}_{e} source

of n-rich fission products on average ~6 beta decays until stable

> 99.9% of \overline{v}_e are produced by fissions in ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

mean energy of \overline{v}_e : 3.6 MeV

only disappearance experiments possible

\overline{v}_{e} from β -decays, pure \overline{v}_{e} source

of n-rich fission products on average ~6 beta decays until stable

> 99.9% of \overline{v}_e are produced by fissions in ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

mean energy of \overline{v}_e : 3.6 MeV

only disappearance experiments possible

\overline{v}_{e} from β -decays, pure \overline{v}_{e} source

of n-rich fission products on average ~6 beta decays until stable

reactor flux and spectra can be determined using the fission fractions

uranium isotopes have higher average energy and higher neutrino yield per fission

Reactor Neutrino Oscillation Experiments

 \overline{v}_e $\overline{v}_{e,x}$ $\overline{v}_{e,x}$ Measure (non)-1/r² behavior

for 3 active v, two different oscillation length scales: $\Delta m_{12}^2 \Delta m_{23}^2$

oscillation frequency L/E $\rightarrow \Delta m^2$

Reactor Neutrino Oscillation Experiments

Ve,x

Ve,x

for 3 active v, two different oscillation length scales: $\Delta m_{12}^2 \Delta m_{23}^2$

oscillation frequency L/E $\rightarrow \Delta m^2$

Measure (non)-1/r² behavior

Relative Measurement of \overline{v}_e Flux and Spectrum

Absolute Reactor Flux Largest uncertainty in previous measurements

Relative Measurement Removes absolute uncertainties!

relative measurement (largely) cancels reactor systematics

Daya Bay Reactor Experiment

6 detectors, Dec 2011- Jul 2012 tar

now running with 8 detectors

target mass: 20 ton per AD photosensors: 192 8"-PMTs energy resolution: $(7.5 / \sqrt{E} + 0.9)\%$

Antineutrino Detector

Inverse Beta Decay

 $\overline{v}_e + p \rightarrow e^+ + n$

Prompt + Delayed Coincidence

prompt event:

positron deposits energy and annihilates (~ns)

delayed event:

neutron thermalizes and captures on Gd

Daya Bay Antineutrino Rate & Spectrum

- 6 reactors, complicate cycle
- max of 2 reactors refueled at each time
- weekly average fission fractions for each core provided by the power company

Daya Bay Neutrino Oscillation

Neutrino oscillation is energy and baseline dependent

Daya Bay demonstrates L/E oscillation

Phys. Rev D 95, 072006 (2017). Daya Bay

Karsten Heeger, Yale University

Daya Bay Neutrino Oscillation

nGd

 $sin^22\theta_{13}$ uncertainty: 3.9% $|\Delta m^2_{32}|$ uncertainty: 3.4%

Consistent results with reactor and accelerator experiments

Phys. Rev D 95, 072006 (2017). Daya Bay

Karsten Heeger, Yale University

nH

This analysis is statistically and (largely) systematically independent from the nGd one

Rate analysis: $sin^2 2\theta_{13} = 0.071 \pm 0.11$, $\chi 2/ndf = 6.3/6$

Phys. Rev. D 93, 072011 (2016)

Global Comparison

Neutrino Anomalies - New Physics?

Anomalies in 3-v global oscillation data

LSND ($\overline{v_e}$ appearance) MiniBoone (v_e appearance) Ga anomaly N_{eff} in cosmology Reactor anomaly and spectral feature ($\overline{v_e}$ disappearance)

new oscillation signal requires: $\Delta m^2 \sim O(1eV^2)$, $\sin^2 2\theta > 10^{-3}$

Sterile Neutrino Search: Daya Bay

Daya Bay's high-statistics dataset can be used to search if there is room for a fourth neutrino:

$$P_{ee} \approx 1 - \cos^4 \theta_{14} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E}\right)$$

$$- \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{11}^2 L}{4E}\right)$$

sterile neutrinos would appear as additional spectral distortion and overall rate deficit

$$1 + \frac{1}{4} + \frac{1}{4}$$

Sterile Neutrino Search: Daya Bay+Minos+Bugey

Sterile Neutrino Search: Daya Bay+Minos+Bugey

Reactor Antineutrino "Anomalies"

Flux Deficit

Spectral Deviation

Extra neutrino oscillations or artifact of flux predictions?

Understanding reactor flux and spectrum anomalies requires additional data

New feature in 4-6 MeV region of spectrum.

Phys. Rev D 95, 072006 (2017). Daya Bay

Time Dependence of Fission Yield

1230 days of daya, 2.2M IBD events, majority of neutrinos come from ²³⁵U and ²³⁹Pu fission. Weekly average fission fractions for each core provided by power company.

Oct/2012 Dec/2012 Apr/2013

Jul/2013

Oct/2013

effective fission fractions viewed by each AD

To simplify time-dependence, sort data according to the ²³⁹Pu fission fraction

 $F_i(t) = \sum_{r=1}^6 \frac{W_{\mathrm{th},r}(t)\bar{p}_r f_{i,r}(t)}{L_r^2 \overline{E}_r(t)} \bigg/ \sum_{r=1}^6 \frac{W_{\mathrm{th},r}(t)\overline{p}_r}{L_r^2 \overline{E}_r(t)}.$

Jul/2012

Apr/2012

Jan/2012

Reactor Spectrum and Fission Fractions

- As ²³⁹Pu increases, flux should decrease and the spectrum should become "softer"
- Observe a definitive change in the measured spectrum.
- Decreases overall, larger effect at high energies

The shape of the spectral evolution is very consistent with model predictions

arXiv: 1704.01082, submitted to PRL Daya Bay collaboration

rejects at >10 σ hypothesis of constant antineutrino flux as a function of ²³⁹Pu

slope of $\sigma_{\rm f}$ vs F239 depends on the ratio of the ²³⁵U and ²³⁹Pu yields

measured evolution in total IBD yield disagrees with recent predictions at 3.1 σ

arXiv: 1704.01082, submitted to PRL Daya Bay collaboration

Model-independent measurement of the fission neutrino yields

Observed 7.8% discrepancy between observed and predicted ²³⁵U yield.

Overall deficit in reactor flux does not result from equal fraction deficits from primary isotopes ²³⁵U, ²³⁹Pu, ²³⁸U, and ²⁴¹Pu

A sterile neutrino deficit would be independent of fuel composition. A measurement of an ²³⁵U (HEU) reactor is needed!

arXiv: 1704.01082, submitted to PRL Daya Bay collaboration

High-powered research reactors

highly-enriched (HEU): mainly U-235, ~10-100 MW_{th},

Commercial power reactors

low-enriched (LEU): many fission isotopes, ~GW_{th}

"Point Source" vs Extended Core

HEU core provides static spectrum of ²³⁵U

Karsten Heeger, Yale University

Short-Baseline Reactor Experiments Worldwide

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

From N. Bowden

Precision Reactor Oscillation and Spectrum Experiment

Physics Objectives

- 1. Search for short-baseline v oscillation at distances <10m
- 2. Precision measurement of ²³⁵U reactor \overline{v}_e spectrum

Experimental Approach

reactor model-independent search for neutrino oscillations

measurement of ²³⁵U spectrum with high energy resolution <4.5%/ \sqrt{E} (σ/E)

background rejection capabilities at near-surface through fiducialization

see P. Surukuchi, Tues afternoon

PROSPECT Physics

A Precision Oscillation Experiment

Direct model-independent test of oscillation of eV-scale neutrinos

Objectives 4σ test of best fit after 1 year >3σ test of favored region after 3 years

PROSPECT Physics

A Precision Spectrum Experiment

A precision measurement of spectrum to address "bump"

Objectives

Measurement of ²³⁵U spectrum Compare different reactor models Compare different reactor cores

Improvement on ILL

Different reactor cores

Precision Reactor and Oscillation Experiment

Segmented, ⁶Li loaded Detector

Detector Design

- 6Li liquid scintillator
- minimum dead material
- double-ended PMT readout,
- light guides, 5" PMTs
- ~5%/√E resolutions

Active Inner Detector +Shielding

Segmented Detector

relative measurement of L/E within detector

Relative Spectrum Measurement search for relative shape distortions independent of reactor models/

independent of reactor models/ predictions

unoscillated spectrum

oscillated spectrum

Development of Detector Components

Low-Mass Optical Separators

High reflectivity, high rigidity, low mass reflector system developed

 DF 2000 PE
 Two-sided adhesive
Carbon Fiber
 Teflon FEP

- Array formed using 3D printed "pinwheel" spacers
- Chemical compatibility of all materials validated

Component design refined for final production

⁶Li-Loaded Liquid Scintillator

Light Yield

• EJ-309 base:

PSD for Cf in LiEJ-309

energy (MeVee)

- Developed non-toxic, nonflammable formulations based on EJ-309, LAB, Ultima Gold
- EJ-309 selected as baseline

Excellent PSD performance for neutron capture & heavy recoils

1.2

1.0

Full-scale production for PROSPECT underway

0.7 0.6

0.1

Prototyping and Detector Assembly

Karsten Heeger, Yale University

IPA, May 9, 2017

Mass Hierarchy and Reactor Neutrinos

determine mass hierarchy from precision measurements of $|\Delta m^2_{31}|$ and $|\Delta m^2_{32}|$

JUNO

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO
LS mass	20 ton	~ 300 ton	~ 1kton	20 kton
Coverage	~ 12%	~ 34%	~ 34%	~ 80%
Energy resolution	$7.5\%/\sqrt{E}$	$\sim 5\%/\sqrt{E}$	$\sim 6\%/\sqrt{E}$	$\sim 3\%/\sqrt{E}$
Light yield	~ 160 p.e./MeV	~ 500 p.e./MeV	~ 250 p. e./MeV	~ 1200 p. e./MeV

Precision 3-v Oscillation Physics

	Current	JUNO
Δm_{12}^2	3%	0.6%
Δm_{23}^2	5%	0.6%
$sin^2\theta_{12}$	6%	0.7%
sin ² θ ₂₃	20%	N/A
$sin^2 \theta_{13}$	10%	15%
	(~4% in 3 yrs)	

Mass Hierarchy Sensitivity

Karsten Heeger, Yale University

Reactor neutrinos are a tool for discoveries.

- Reactors are flavor pure source of $\overline{v_{e.}}$
- 60 years after Reines and Cowan reactor $\overline{v_e}$ hold promise to reveal new physics

Precision oscillation physics

- firmly established neutrino oscillations over km-long baselines
- most precise measurement of $sin^22\theta_{13}$ and $|\Delta m^2_{ee}|$, 1230 days of data
- stringent limit for neutrino mixing to light sterile neutrino for $|\Delta m^2_{41}| < 0.2 \text{ eV}^2$

Flux and spectrum

- has measured time dependence of flux and spectrum
- flux evolution disagrees with models, discrepancy in ²³⁵U neutrino yield

New data are required to address the reactor rate and spectrum anomalies.

Short Baseline Experiments aim to resolve current reactor anomalies

- probe favored region for eV-scale sterile neutrinos at $>3\sigma$ within 3 years
- measure the $^{235}U \overline{v_e}$ spectrum, complementary to LEU measurements
- proceeding with construction of detector, data taking to start in 2017

Medium Baseline Experiments aim to measure the mass hierarchy

Stay tuned!