Contribution ID: 89 Type: not specified

Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance

Monday, 8 May 2017 16:30 (15 minutes)

The IceCube neutrino discovery was punctuated by three showers with E_{ν} ~ 1-2 PeV. Interest is intense in possible fluxes at higher energies, though a marked lack of E_{ν} ~ 6 PeV Glashow resonance events implies a spectrum that is soft and/or cutoff below ~few PeV. However, IceCube recently reported a through-going track event depositing 2.6 \pm 0.3 PeV. A muon depositing so much energy can imply $E_{\nu_{\mu}}$ gtrsim 10 PeV. We show that extending the soft $E_{\nu}^{-2.6}$ spectral fit from TeV-PeV data is unlikely to yield such an event. Alternatively, a tau can deposit this much energy, though requiring $E_{\nu_{\tau}}$ ~10x higher. We find that either scenario hints at a new flux, with the hierarchy of ν_{μ} and ν_{τ} energies suggesting a window into astrophysical neutrinos at E_{ν} ~ 100 PeV if a tau. We address implications, including for ultrahigh-energy cosmic-ray and neutrino origins.

Primary author: Dr LAHA, Ranjan (KIPAC, Stanford University and SLAC National Accelerator Laboratory,

USA)

Presenter: Dr LAHA, Ranjan (KIPAC, Stanford University and SLAC National Accelerator Laboratory, USA)

Session Classification: Neutrino Astronomy

Track Classification: Neutrino Astronomy - Convenor: Gisela Anton, FAU / ECAP