

Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance

Ranjan Laha

Kavli Institute for Particle Astrophysics and Cosmology (KIPAC)

Stanford University

SLAC National Accelerator Laboratory

Kistler and Laha arXiv: 1605.08781 (submitted)

Contents

- The discovery of astrophysical neutrinos by IceCube
- The highest energy event in IceCube --- a 2.6 PeV track event
- 2.6 PeV as a through going muon track
- 2.6 PeV as a through going tau track
- Conclusion

Discovery of astrophysical neutrinos

Steeper spectral index w.r.t. 3 year data due to lack of PeV events, and higher yield of events at lower energies

No statistically significant clustering in space

Discovery of astrophysical neutrinos

No statistically significant clustering in space

Tension between spectral indices of these two different searches

2.6 PeV track event

Deposited energy $2.6 \pm 0.3 \text{ PeV}$

Reconstructed equatorial coordinates: decl. 11.42° RA 110.63°

Does not point towards any known astrophysical source

Highest energy lepton detected till date --- very important to analyze it thoroughly

Immediate questions:

1. What flavor of neutrino produces such a track?

IceCube 1607.08006

2. What are implications for astrophysical neutrinos in light of prior discoveries?

What neutrino flavor produces a track?

- Through going muons are assumed to give rise to through-going track like events
- To deposit 2.6 PeV of energy, the muon typically requires ≥ 5 PeV energy at detector entry point --- it is probable that this is a super-Glashow (energy ≥ 6.3 PeV) neutrino
- An overlooked possibility in the literature: very high energy through going taus can also give rise to track-like events
- To deposit 2.6 PeV of energy, the tau requires \gtrsim 50 PeV energy at detector entry point
- Can IceCube individually distinguish a through going tau from a through gong muon?
- We discuss astrophysical scenarios for each of these possibilities

A generic equation for event numbers for through going leptons $\frac{d}{dE_{\ell}} \left[b_{\ell}(E_{\ell}) \frac{dN_{\ell}}{dE_{\ell}} \right] + \frac{m_{\ell}}{c \tau_{\ell} E_{\ell}} \frac{dN_{\ell}}{dE_{\ell}} = Q(E_{\ell})$ Kistler and Laha arXiv: 1605.08781 Lepton energy loss: $b_\ell \equiv dE_\ell/dX$ Lepton energy E_{ℓ} includes Lepton lifetime \mathcal{T}_{ℓ} Earth absorption

Volumetric source term $Q(E_{\ell}) \approx N_A \rho \phi_{\ell} \left(\frac{E_{\ell}}{\langle 1-y \rangle}\right) \sigma_{\rm CC} \left(\frac{E_{\ell}}{\langle 1-y \rangle}\right) / \langle 1-y \rangle$

Regeneration is important for taus

Earth absorption is important for all neutrino flavors

Where does it come from?

Galactic coordinates

E_{dep} ≈ 2.6 PeV IceCube track event

contours of $E_v > 1$ TeV Fermi emission smoothed by 5° Upgoi Kistler and Laha arXiv: 1605.08781 φ_8 muons ($E_\mu > 5$ PeV) Fermi TeV

Shaded: Sky density of E_{μ} > 5 PeV muons from model φ_8 Solid: The horizon demarcates upgoing and downgoing directions Dashed: The rough 10° downgoing boundary for atmospheric muons No gamma-ray source was reported by HAWC

The 2.6 PeV track event probably comes from a diffuse astrophysical neutrino flux

Astrophysical neutrino fluxes

interactions

$$\varphi_i(E_{\nu}) = f_i \left[\left(\frac{E_{\nu}}{E_i} \right)^{\alpha \eta} + \left(\frac{E_{\nu}}{E_i} \right)^{\beta \eta} \right]^{1/\eta} \quad i = 7, 8, \text{ and } 9$$

$$E_i = 10^i \text{ GeV}$$

Energy distribution

Muons of energy ≥ 100 GeV can traverse the full IceCube detector

Taus of energy ≥ 50 PeV can traverse the full IceCube detector

General conclusion: in order to deposit 2.6 PeV energy inside IceCube, the energy of tau as it enters the detector must be an order of magnitude larger than that of muon: enormous physical significance

Must optimize tools for this new signal in IceCube

Angular distribution

Angular spectra of $E_{\mu} > 5$ PeV muons and $E_{\tau} > 50$ PeV taus

For the same spectra, the angular distribution is different --- through going muon tracks and through going tau tracks probe different energy ranges of the underlying astrophysical neutrino spectrum

For $\varphi_7 \rightarrow \varphi_8 \rightarrow \varphi_9$, the tau/ muon track ratio approaches unity

Kistler and Laha arXiv: 1605.08781 **Event numbers** Events in 5 km² yr (μ , τ tracks) or 5 km³ yr (showers).

	$E_{\nu}^{-2.6}$	$arphi_7$	$arphi_8$	$arphi_9$
upgoing μ : $E_{\mu} > 5 \text{ PeV}$	0.04	0.22	0.25	0.08
down $\mu: E_{\mu} > 5$ PeV; $\cos \theta_{\text{nadir}} > -0.2$	0.06	0.30	0.46	0.25
upgoing $\tau: E_{\tau,up} > 50 \text{ PeV}$		0.01	0.08	0.07
down τ : $E_{\tau} > 50$ PeV; $\cos \theta_{\text{nadir}} > -0.2$		0.03	0.17	0.19
Total tracks	0.1	0.56	0.96	0.59
$\bar{\nu}_e e$ shower: $E_{\rm em} > 5 \ {\rm PeV}$		2.6	0.36	0.04
$\nu_e + \bar{\nu}_e \text{ CC: } E_{em} > 5 \text{ PeV}$		0.87	0.50	0.12
$\nu + \bar{\nu}$ NC: $E_{\rm em} > 5$ PeV		0.18	0.42	0.16

The normalizations of φ_7 , φ_8 , and φ_9 can be made variable

The harder spectra adopted by us is more favorable to give rise to the 2.6 PeV track event

The $E^{-2.13}$ produces too many Glashow resonance events (~ 4), and might be disfavored

Is the 2.6 PeV track event hinting at a super-Glashow astrophysical neutrino flux?

Conclusions

- The 2.6 PeV track event is the highest energy event in IceCube
- If interpreted as a through going muon, then the neutrino energy can be $\gtrsim\!6.3~\text{PeV}$
- The HESE best fit flux ~ E^{-2.6} is unlikely to give such an event
- The Northern Hemisphere muon best fit flux ~ E^{-2.13} produces too many Glashow resonance events
- Phenomenological spectra peaked at higher energies might give rise to this event --- hints of super-Glashow neutrino flux?
- We show for the first time that a through going tau can also give rise to tracks and possibly this event
- The neutrino energy must be \gtrsim 70 PeV if a through going tau gives rise to this event
- The enormous difference in parent neutrino energy implies that it is desirable to better characterize a through going muon track and a through going tau track
- The through going tau track is a new signal in IceCube ---- needs more research ---- can we distinguish a through going muon track and a through going tau track individually?

Questions: rlaha@stanford.edu