

Measurement of Atmospheric ν_{μ} Disappearance with IceCube/DeepCore

João Pedro Athayde Marcondes de André

Joshua Hignight for the IceCube Collaboration

MICHIGAN STATE

09 May 2017

Neutrino oscillations with atmospheric neutrinos

- Several baselines available
 - L/E dependency on oscillation
 - Many orders of magnitude in E
- IceCube/DeepCore:
 - See clear ν_{μ} disappearance

- IceCube/DeepCore not (very) sensitive to:
 - ▶ Neutrino mass ordering, δ_{CP} , ν_e appearance

Neutrino oscillations with atmospheric neutrinos

- Several baselines available
 - L/E dependency on oscillation
 - Many orders of magnitude in E
- IceCube/DeepCore:
 - See clear ν_{μ} disappearance

- IceCube/DeepCore not (very) sensitive to:
 - ▶ Neutrino mass ordering, δ_{CP} , ν_e appearance

IceCube IceCube Lab IceTop 81 Stations 324 optical sensors 50 m IceCube Array 86 strings including 8 DeepCore strings 5160 optical sensors 1450 m DeepCore 8 strings-spacing optimized for lower energies 480 optical sensors Eiffel Tower 324 m 2450 m 2820 m Bedrock

- Instrument 1 Gton of ice
- Optimized for TeV-PeV neutrinos
 - Astrophysical v discovered!
- At its center: DeepCore
 - ~10 Mton region with denser instrumentation
 - Located in clearest ice
 - ⇒ lower E threshold
 - ⇒ study neutrino oscillations
 - Surrounding detector used as active veto against atmospheric μ

Measurement strategy

- Main background is atmospheric μ
 - Use IceCube as veto to reject atm μ events
- Reconstruct ν energy and direction
 - oscillation distance (L) given by zenith
- Measure oscillation by fitting $L \times E \times PID$

Comparison to last published results

IC2014 analysis

- Results in PRD 91, 072004 (2015)
- Focus on ν_{μ} CC "golden events"
 - Clear μ tracks
 - Several non-scattered photons
- Use only up-going events

Similarities in both analyses

- Atmospheric μ background shape estimated from data
- ν reconstruction resolution similar
- Both are 3 year data sets (not same)

This analysis

- Order of magnitude increase in statistics
- Reconstruction fits full event topology with likelihood-based method
 - Can fit events with scattered photons
 - Can reconstruct all events
- PID variable separates sample in two:
 - Track: ν_{μ} CC enriched sample
 - Cascade: mix of all ν flavors
- Full sky analysis
 - Better control of systematic uncertainties
- Fitting includes term accounting for statistical uncertainty from prediction

Systematics used in analysis and best fit

Parameters	Priors	Best Fit	
		NH	IH
Flux and cross section parameters			
Neutrino event rate [% of nominal]	no prior	85	85
$\Delta\gamma$ (spectral index)	$0.00{\pm}0.10$	-0.02	-0.02
$\nu_{e} + \bar{\nu}_{e}$ relative normalization [%]	$100{\pm}20$	125	125
NC relative normalization [%]	$100{\pm}20$	106	106
$\Delta(u/ar{ u})$ [σ], energy dependent ‡	$0.00 {\pm} 1.00$	-0.56	-0.59
$\Delta(\nu/\bar{\nu})$ [σ], zenith dependent [‡]	$0.00{\pm}1.00$	-0.55	-0.57
M_A (resonance) [GeV]	$1.12{\pm}0.22$	0.92	0.93
Detector parameters			
overall DOM efficiency [%]	100±10	102	102
relative DOM efficiency, lateral [σ]	$0.0{\pm}1.0$	0.2	0.2
relative DOM efficiency, head-on [a.u.]	no prior	-0.72	-0.66
Background			
Atm. μ contamination [% of sample]	no prior	5.5	5.6

ν_{μ} disappearance oscillation analysis

best fit uncertainty from statistics and data-driven background shape error

- Analysis done with events with E_{reco} ∈ [5.6, 56] GeV
- Fitting to data done in 3D space $(E, \cos \theta, PID) \rightarrow$ projected onto L/E for illustration

•
$$\chi^2/ndf = 117/119$$

ν_{μ} disappearance oscillation analysis

- Contours calculated using Feldman-Cousins.
- Result consistent with other experiments.
- Using data from 3 years of detector operations.
- This measurement is still statistics limited!

$$\Delta m_{32}^2 = 2.31^{+0.11}_{-0.13} \times 10^{-3} \text{ eV}^2$$
$$\sin^2 \theta_{23} = 0.51^{+0.07}_{-0.09}$$

Conclusion

- Improvements in analysis techniques for IceCube-DeepCore
 - Full sky sample
 - More versatile reconstruction
- Updated measurement of u_{μ} disappearance made
 - Significant reduction in θ_{23} and Δm_{32}^2 ranges
 - Good data/MC agreement obtained
 - Result consistent with other experiments
 - * Preference for maximal mixing, same as T2K
 - Publication being prepared currently
- Other measurements with this new sample are under way!
- Stay tuned for more!

Backup

u_{μ} disappearance oscillation analysis – inverted hierarchy

- Contours using Wilks' threshold.
- Feldman-Cousins calculated for NH shows contour smaller in Δm_{32}^2

Fitting Function used in this analysis

- 30 years of MC for ν components and several systematic variants
- We use a sideband from data to measure the atmospheric μ background shape
 - Similar method used in PRD sample
- Need to account for uncertainty in prediction, especially for background muons
- Our solution is to fit a χ^2 function instead of a \mathcal{L} function.

$$\chi^2 = \sum_{i \in \{\text{bins}\}} \frac{(n_i^{\text{pred}} - n_i^{\text{data}})^2}{(\sigma_i^{\text{pred}})^2 + (\sigma_i^{\text{data}})^2} + \sum_{j \in \{\text{syst}\}} \frac{(s_j - \hat{s}_j)^2}{\hat{\sigma}_{s_j}^2}$$

- n_i^{ored} , n_i^{data} : number of events in bin *i* for prediction (ν MC + μ sideband) and data
- σ^{data} : statistical uncertainty in the data for bin *i*
- σ_i^{pred} : statistical uncertainty in prediction with additional shape uncertainty in μ sideband
- \hat{s}_j , $\hat{\sigma}_{s_i}$: central value and sigma of a Gaussian prior of systematic s_j
- All bins have large enough number of events a Gaussian distribution approximates well a Poisson distribution

Our data and best fit in analysis binning

J.P.A.M. de André, J. Highnight

IPA 2017

"golden events"

- $\bullet \ {\rm Clear} \ \mu \ {\rm tracks}$
 - Reduce contamination of cascades (primarily v NC and v_e CC)

- Require several non-scattered γ
- select events "easy" to reconstruct
 - 10° resolution in neutrino zenith
 - 25% resolution in neutrino energy

HybridReco/MultiNest

- MultiNest is an implementation of nested-sampling algorithm
 - alternative approach to Markov Chain MC
 - designed to work efficiently in multi-modal likelihood spaces
- We use it in place of a "minimizer"
 - Reconstruct 8 parameters describing low-energy ν_μ CC (HybridReco)
 - (x,y,z,t) + (zenith, azimuth) + (track length, cascade energy)
 - If used while fixing track length at 0 m ⇒"cascade fit"
 - Use the likelihood function defined in Millipede (Poisson)

- $\bullet \ \ \text{DeepCore} \rightarrow \text{``golden event'' analysis}$
- $\bullet~$ DeepCore+ \rightarrow this analysis

Inverted Corridor Cut

J.P.A.M. de André, J. Highnight

IPA 2017

DOM sensitivity

J.P.A.M. de André, J. Highnight