Effect of neutrino decay on sterile neutrino searches in IceCube

Carlos Argüelles in collaboration with Z. Moss, M. Moulai, and J. Conrad

IPA, MADISON, MAY, 2017

Massachusetts Institute of Technology

Our current picture

Neutrino oscillations : mass eigenstates (ν_i ; i = 1, 2, 3) and flavor eigenstates (ν_{α} ; $\alpha = e, \mu, \tau$) are not the same.

[[]B. Kayser, hep-ph/0506165 (2004)]

[C. Gonzalez-Garcia et al., JHEP 12 (2012)]

The pieces that do not fit ...

Oscillation Channel	Class	Experiments	Oscillation amplitude	
Electron Disappearance P(ve→ve)	Reactor Experiments	GALLEX (⊻) SAGE (⊻) {Global Reactors}	4 U _{e4} ² (1- U _{e4} ²)	•
Muon Disappearance P(vµ→vµ)	Long Baseline Experiments	Anomolous-less	4 U _{µ4} ² (1- U _{µ4} ²)	~
Electron Appearance P(vµ→ve)	Short Baseline Experiments	LSND (⊻) MiniBooNe (⊻, v)	4 U _{µ4} U _{e4} ²	×

Stroke of luck...

In the **Earth**, for sterile neutrino of $\Delta m^2 = O(1eV^2)$ there is a matter resonant effect when

$$E_{\nu}^{res} = \frac{\Delta m^2 \cos 2\theta}{2\sqrt{2}G_F N} \sim O(TeV)$$

Nunokawa et al. PLB, B562, 279 (2003). arXiv:hep-ph/0302039

IceCube high-energy sterile neutrino result

MORE TENSION!

What if it's not so simple?

G.Collin, C.A., J. Conrad, M. Shaevitz (Nucl.Phys. B908 (2016), Phys.Rev.Lett. 117 (2016) no.22)

sterile neutrino + new element ?= all is good

For a extended discussion see J. Conrad talk in this session!

Sterile Neutrino + NSI

Increasing NSI strength

Liao & Marfatia, Phys.Rev.Lett. 117 (2016) no.7, 071802

See also Pospelov (1103.3261), J. Kopp et al. (1408.0289), Cherry et al. (1411.1071), Y. Farzan (1505.06906), and X. Chu et al. (1505.02795)

Sterile Neutrino + Decay?

- In the Standard Model (SM) stable particles are the ones protected by a symmetry.
- Heavy (keV-MeV) sterile neutrino decay has been considered before as an explanation of the LSND/MB anomaly, *e.g*.
- Palomares-Ruiz et al. (hep-ph/0505216),
- Gninenko (1009.5536),
- Dip et al. (1105.4664),
- -Bai et al. (1512.05357),

Our model: eV-sterile neutrino + decay!

Standard model neutrino decay

 $\nu_i \to \nu_j + \gamma : \qquad \tau \simeq 10^{36} (m_i/eV)^{-5} yr$ $\nu_i \to \nu_j + \gamma + \gamma : \qquad \tau \simeq 10^{57} (m_i/eV)^{-9} yr$ $\nu_i \to \nu_j + \nu_l + \bar{\nu}_k : \qquad \tau \simeq 10^{55} (m_i/eV)^{-5} yr$

"Active" neutrino decay is very constrained. "Sterile" neutrino decay is mostly unconstrained.

 $m_i > m_i$

Choosing the decay channel

In a complete model we can allow decay to all lighter neutrinos, for the moment we assume a single decay channel.

Neutrino Oscillations + Decay

We use the nuSQuIDS package to calculate neutrino oscillations + decay.

oscillations regeneration
$$\frac{\partial\rho}{\partial x} = -i[\tilde{H}_0,\rho] - \frac{1}{2}\{\Gamma,\rho\} + \mathcal{R}(E)$$
decay

$$\mathcal{R}(E) = \sum_{i,j} \operatorname{Tr} \left(\rho(\gamma(E)m_1) \Pi_i(\gamma(E)m_1) \right) \frac{1}{\tau_{i,j}\gamma(E)} \Pi_j(E).$$

$$\gamma(E): \text{ boost factor}$$

 $\tau_{ij}^{-1} = \Gamma_{ij}$: partial decay rates

Oscillograms

https://github.com/arguelles/nuSQuIDS

 10^{5}

1.0

0.8

0.6

 $\cos\theta_z$

0.4

0.2

0.0

13

1.0

Take home message

 We consider a new scenario: eV-sterile neutrinos + decay
Interesting effects on the IceCube disappearance analysis, but effects across all experiments of interest — See Janet's talk later in this session!

Stay tuned for our upcoming paper with a complete analysis!

THANKS!

*things in this talk were calculated with nuSQuIDS! Ask me about it! https://github.com/arguelles/nuSQuIDS/

BONUS SLIDES!

<u>SQuIDS/nu-SQuIDS</u>

C.A., J. Salvado, and C. Weaver. [arXiv:**1412.3832, CPC 2015.06.022.**] C.A., J. Salvado, and C. Weaver. . [In preparation] What is it?

Is a software framework written in C++ that evolves quantum mechanical ensembles. nu-SQuIDS calculates neutrino propagation (oscillation+interactions).

What can it do?

□ Calculate neutrino oscillation probabilities in 3 generations (can configure <u>mixing angles</u>, <u>CP phases</u>, and <u>mass splittings</u>).

Ready to use in: short baseline, long baseline, atmospheric, and solar neutrino oscillation experiments.

□ Incorporates neutrinos' non-coherent interactions (includeing tau regeneration).

□ Can handle collective neutrino interactions (e.g. supernova), as well as neutrino-antineutrino interactions.

Easily extendable to BSM physics scenarios. Sterile neutrinos, NSI, and LV already implemented!

Get it here:

https://github.com/jsalvado/SQuIDS https://github.com/arguelles/nuSQuIDS

