Forward Charm contribution to the Atmospheric Neutrino Flux

Logan Wille in collaboration with Francis Halzen

arXiv 1605.01409

IceCube Particle Astrophysics Symposium Diffuse Session

What is Forward Charm?

V. Barger, F. Halzen, and W. Y. Keung, Phys. Rev. D 25, 112 (1982).

Atmospheric Neutrino Fluxes

Charm particles promptly decay into neutrinos, avoiding energy losses which extends the flux to high energies

P. Desiati et. al. arXiv: 1008.2211

Why investigate Forward charm?

- The amount of forward charm production is uncertain due to unobserved phase-space at colliders
- A forward charm could potentially create features in the high energy flux and be a large foreground to cosmic neutrinos

The Forward Charm

 We use a parameterization of forward charm production. This allows us flexibility to investigate how the prompt flux changes in relation to charm production

$$\frac{d\sigma}{dx_F} = g(x_F)f(E_p)$$

 Our goal is to draw an upper limit prompt flux that matches forward charm data and doesn't exceed measured atmospheric neutrino data

 $x_F = \frac{p_z}{P}$

Charm Parameterization

 $\frac{d\sigma}{dx_F} = g(x_F)f(E_p)$

Fluxes when changing shape

7

Fluxes when changing Scaling

What does this look like in IceCube?

 Forward charm produces significant number of events, but cannot explain the highest energy events or 30 TeV bump

M. G. Aartsen et al. (IceCube), Phys. Rev. **D91**, 022001 (2015), 1410.1749.

What we can conclude

- Highest energy neutrino events cannot be explained by <u>any</u> prompt neutrino flux
- Forward charm can add a significant prompt neutrino flux, however, it is difficult to make a prediction due to very limited data and many different models
- IceCube could look for intrinsic charm which would compliment LHC searches

Forward strange production also occurs for K⁺ A

R. T. Edwards et al., Phys. Rev. **D18**, 76 (1978).

Muon Airshower Types

Uncorrelated Muon

The Self-veto effect

 We used Gaisser et al.'s technique to calculate the self-veto probability of prompt neutrinos

Self-veto Probabilities

16

Removing Self Veto

17

Prompt flux with E^-2 Spectrum

