Status of

Dr. Laura Gladstone MIT Laboratory for Nuclear Science

IceCube Particle Astrophysics Symposium Madison, WI May 2017

Double Beta Decay

The Experimental Challenge Long Time Scales: 14C 104 years

14C104 years40K109 years232Th1010 yearsThe Universe1010 yearsTwo Neutrino Double Beta1020 yearsNeutrinoless Double Beta1026 yearsProton Decay>1034 years

- These searches require:
 - large target masses
 - long measurement time
 - Iow backgrounds

Bolometers measure total heat

CUORE is an array of bolometers

- "Cryogenic Underground Observatory for Rare Events"
- 988 TeO₂ crystals operated as bolometers
- 742kg TeO₂, 206 kg ¹³⁰Te
- Copper and PTFE (teflon) support structure

Detector Construction

- Ultra-pure source materials
- Ship, don't fly, to Gran Sasso
- Apply sensors and heaters with a robotic arm to ensure consistency
- Only handle crystals in N₂ environment

CUORE Cryostat

"The coldest cubic meter in the known universe"

- Long term stability, completed March 2016
- Helium dilution cooling and 5 pulse tubes
- Cooling power: 3mW @10mK
 - 300K to 4 K ~ 2.5 weeks
 - 4K to 10 mK ~ 1/2 week
- Lots of shielding:
 - 2.1t modern lead @50mK
 - 4.6 t roman lead @4K
 - 35 cm external lead
 - 18 cm PET, 2cm H₃BO₃

L. Gladstone, MIT

Detector Calibration System

- For CUORE, we use:
 - Constant-energy pulsers to measure detector stability and correct for variations in detector gain
 - ²³²Th γ-ray sources every ~month (239 keV to 2615 keV)
- Sources are outside cryostat during physics data-taking and lowered into cryostat and cooled to 10 mK for calibration
- Sources are put on strings and are lowered under their own weight
- A series of tubes in the cryostat guides the strings

NIM A 844, 32 (2017), arXiv:1608.01607

Gran Sasso National Lab

Generations of Bolometer Experiments

CUORE-0: 0vββ decay results

CUORE-0 regained the Cuoricino limit in 40% of the lifetime

Combined with Cuoricino: T_{1/2}^{0vββ} (¹³⁰Te)> 4.0 × 10²⁴ y (90% CL)

Effective Majorana Mass: m_{ββ} <(270-650) meV

Validated data blinding for CUORE

CUORE analysis testbed

CUORE-0 backgrounds

CUORE-0 backgrounds

CUORE-0 backgrounds and 2vbb

- MC-background model separates surface & bulk contamination
 - environmental gammas, muons, and neutrinos
- Find contamination levels from material screening ICPMS, HPGe counter, neutron activation analysis
- Bayesian fit to CUORE-0 data with priors from screening

The European Physical Journal

volume 77 · number 1 · january · 2017

CUORE-0 back

- MC-background model separat
 - environmental gammas, muo
- Find contamination levels from counter, neutron activation and
- Bayesian fit to CUORE-0 data

. Experin

Particles and Fields

CUORE-0 data (JM₂) compared to the predicted contribution from the 2νββ decay of ¹¹⁰Te and the background from ⁴K decays in the bulk of the TeO₂ crystals. From C. Alduino, K. Alfonso, D.R. Artusa et al. : Measurement of the two-neutrino double-beta decay half-life of ¹³⁰Te with the CUORE-0 experiment.

Springer

L. Gladstone, MIT

Detector Installation, Aug 2016

• Towers installed into the cryostat, the process took I month

Cooling and commissioning

Start Dec 5

Base temperature (~7-8 mK) on Jan 26

First pulses: Jan 27

Diode thermometer at 10mK plate

Commissioning:

- Set the thermistor working points
- Tuned the PID temperature stabilization system
- Analyzed and optimized the noise spectrum

Projected Sensitivity

CUORE Goal:

- △E_{FWHM} ≤ 5 keV @ 2615 keV
- Bg = 0.01 c/keV/kg/y
- $T_{1/2}$ (5 years, 90% C.L.) > 9.5 x 10²⁵ y
- Effective Majorana mass 50-130 meV.

CUPID to cover the Inverted hierarchy

- Enriched TeO₂ with α discrimination
- Other isotopes scintillating bolometers

Conclusions

- The detector crystals are in the cryostat, the "coldest cubic meter in the known universe"
- CUORE's first pulse was recorded 27 Jan 2017
- The commissioning of the CUORE experiment was completed in April 2017 and CUORE is now taking data
- CUORE is on track to achieve: $T_{1/2}$ (5 years, 90% C.L.) > 9.5 x 10²⁵ y

CUORE Collaboration Cuore.Ings.infn.it facebook.com/CUORECollaboration

L. Gladstone, MIT

CUORE Cryostat

"The coldest cubic meter in the known universe" 6.3mK base temperature

- Im diameter inner volume
- ~3 weeks to cool

Compare to a more typical dilution refrigerator:

- 20cm diameter inner volume
- 24 hr to cool

CUORE calibration system

Calibration system

- ²³²Th capsules on strings
- 6 internal strings (10 mK),
 6 external strings (50 mK)
- · Lowered in and out monthly with stepper motors

4 K Lead

- 10 mm/min constant speed @ 10 mK stage
- ~1 day to supply
- 239 keV 2615 keV (²⁰⁸TI) calibration peaks
 2615 keV close to Q_{bb} at 2527.5 keV

Inner string

Outer string

Online Monitoring

- Internal websites archives and displays all channels, plus cryostat environment data, with details in pop-up plots
- Display summaries of each run
- Tag bad intervals automatically or by hand
- System sends email and phone alarms
- Use mobile-friendly web libraries

CUORE-0 to CUORE

- 742 kg of TeO², **206 kg of ¹³⁰Te**
- new pulse tube cooled (dry) fridge continuous operation for many months/ years (better efficiency)
- better material screening, e.g. better and less copper
- CUORE-0 style cleaning procedures (surface etching, N₂ glove boxes)
- more shielding
- vibration dampening systems

CUPID

CUPID - CUORE Upgrade with Particle IDentification

- Same cryostat
- Enriched TeO₂ (almost x3 improvement)
- with very low threshold bolometric light detectors to provide α/β discrimination
- TES, MMC, Neganov-Luke NTD type detector R&D started
- Surface optimizations TeO₂ roughness, anti-reflective coating on bolometric light detector

Or

Other isotopes - scintillating bolometers

