The Cherenkov Telescope Array: Status and Plans

Workshop on a Wide Field-of-View Southern Hemisphere TeV Gamma Ray Observatory November 10, 2016

> David A. Williams, University of California, Santa Cruz, on behalf of the CTA Consortium www.cta-observatory.org

The CTA Concept ("Baseline")

- Arrays in both hemispheres for full sky coverage
 - ESO, Paranal, Chile in the south (negotiations); ORM, La Palma, Spain in the north
- 4 large (23 m) telescopes (LSTs) in the center threshold of 30 GeV
- Southern array adds:
 - 25 medium (9-12 m) telescopes (MSTs) 100 GeV 10 TeV energy coverage
 - 70 small (~4 m) telescopes (SSTs) covering >3 km² expand collection area >10 TeV for Galactic sources
- Northern array adds 15 MSTs (no SSTs)
- Construction to begin in 2017, continue through ~2023

CTA flux sensitivity – steady point sources

Differential point source sensitivity

Angular resolution (80% containment radius)

cta

Broad Spectrum of Science

Time Allocation & Community Access

*of scientists from nations contributing to CTA construction and operations and from site host nations

Key Science Projects (KSPs)

The Survey Key Science Projects

Extragalactic Survey:

Unbiased survey of ¼ sky to ~6 mCrab VHE population study, duty cycle New, unknown sources; 1000 h

Galactic Plane Survey:

Survey of entire plane to ~2 mCrab Galactic source population: SNRs, PWNe, etc. PeVatron candidates, early view of GC, 1620 h

Galactic Centre Survey:

ID of the central source Spectrum, morphology of diffuse emission Deep DM search Central exposure: 525 h, 10°x10° : 300 h

Large Magellanic Cloud Survey:

Face-on satellite galaxy with high SFR Extreme Gal. sources, diffuse emission (CRs) DM search; 340 h in six pointings

Galactic Particle Accelerators

Surveys of:

- Galactic center
- Galactic plane
- LMC

Survey speed: x300 faster than current IACTs

Resolving complex sources

Opening up the Transient Domain

A simulated GRB (E > 30 GeV)

CTA Simulation of GRB 080916C seen by GBM + LAT

from

Gamma-Ray Burst Science in the Era of Cherenkov Telescope Array (Astroparticle Physics special issue article) Susumu Inoue et al.

11

Still Looking for the Nature of Dark Matter

Ackermann et al. 2015, PRL 115, 231301

Many intriguing reports of evidence for dark matter particles— none has yet proved convincing LHC direct production search and Fermi-LAT indirect search rule out light WIMPS with thermal relic cross section

CTA probes WIMP masses not reached by these experiments

Aad et al. 2015, Eur. Phys. J. C 75, 299

A Southern Wide Field of View Observatory (Cta

- Find transients that CTA could follow-up more deeply
 - GRB
 - AGN and XRB flares
 - New objects?
- Find objects dominated by emission above a few TeV
- Find objects with <100% emission duty cycle
- Find extended sources
- Help map diffuse emission
 - Important background, *e.g.*, for Galactic center halo dark matter search

HAWC will teach us a lot about the frequency of these objects

Consortium Membership

CTA Timeline

Threshold Implementation: How to Start

Funding situation at threshold should allow to be constructed

Site	Telescopes	Threshold Arrays	Baseline Arrays
North	LST	4	4
	MST	5	15
South	LST	0	4
	MST	15	25
	SST	50	70

South: additional LSTs highly desirable, but not required for threshold North: additional MSTs highly desirable, but not required for threshold Telescope cost: South ~90 M, North ~60 M

Fitting It All Together

- CTA Observatory GmbH (CTAO) formed to manage construction and operation
- Expected that most of the hardware will be provided as in-kind contributions by members of CTA Consortium (CTAC)
- Work in progress to clarify the roles of multiple designs for medium- and small-sized telescopes (MSTs & SSTs)
- Single, unified design and construction effort for largesized telescopes (LSTs)
- U.S. groups are developing novel MST design

Two-Mirror Atmospheric Cherenkov Telescope: The Schwarzschild-Couder Telescope (SCT)

- Designed to deliver performance close to theoretical limit of Cherekov technique
- Innovative U.S. design key to boosting CTA performance
- Corrects aberrations providing higher resolution, wider field
- Small plate scale enables SiPM camera
- Deep analog memory waveform samplers to minimize dead-time and allow flexible triggering
- High level of integration into ASICs allows dramatic cost savings (<\$80 per channel) and high reliability (11,328 channels)
- Overall cost comparable to single-mirror mediumsized telescope
- Adopted now by European groups also for smallsized telescopes

Uses the same positioner and foundation as single-mirror MST

The SCT: Showers Measured Better

The SCT: Showers Measured Better

Performance simulations comparing arrays of single-mirror MSTs and (slightly smaller) SCTs show that for the SCT array:

The γ -ray angular resolution is ~30% better

Signal: γ-ray Showε Energy: 1 Te

- The γ-ray point source sensitivity is ~30% better (as much as 50% better in some cases)
- The effective field of view has 25% larger radius

M. Wood et al. 2016, Astroparticle Physics 72, 11 T. Hassan et al. 2015, Proc. ICRC, arXiv:1508.06076

11,328 channels

kground: on Shower rgy: 3.2 TeV

pSCT – Structure

Webcam — http://cta-psct.physics.ucla.edu/

- pSCT team of US, German, and Mexican institutions completed the assembly of the telescope structure in August 2016.
- 1. Structure was balanced, motion system activated and base functionality verified.
- 2. pSCT lightning protection system installed.
- Installation of auxiliary subsystems: power, cooling, M1&M2 baffles etc. is planned for November.
- Commissioning activities of the pSCT tracking control system are planned for December.

Structure assembled, August 18, 2016

pSCT balanced and motion control activated

pSCT & VERITAS

pSCT lightning protection installed

pSCT – Optics and Camera

Two primary mirror panels aligned at UCLA

Secondary mirror panels: technology demonstrated, fabrication started

pSCT global alignment system: optical tables fabricated, undergoing calibration

pSCT optical system integration team

Electronics assembly and backplane integration

pSCT camera Integration

pSCT Inauguration June 29, 2017

pSCT inauguration planned next year in conjunction with a **Celebration of ten years of VERITAS June 28–29 in Tucson, Arizona**

Inauguration will be at the Whipple Observatory on the second day of the celebration

CTA-US Goals

- Implementation of the baseline MST arrays
 - ✓ Dominate sensitivity in the core 100 GeV 10 TeV energy range
- Complete prototype SCT
 - ✓ Verify performance
 - ✓ Vet performance and cost through CTA reviews one preconstruction review already (September 2013)
- Lead completion of baseline MST array(s) in S or N with SCTs
 - ✓ Assembling consortium
 - \checkmark In collaboration with international partners
- Secure \$25M in construction funding
 - ✓ NSF Astronomy MSIP (2017 call?)
 - ✓ NSF Physics mid-scale (in parallel)
- Support CTA operations at a commensurate level
 - \sim \$1.8M per year for 10 years, starting \sim 2023
- Participate in full spectrum of CTA science
 - ✓ Key Science Projects
 - $\checkmark \quad \text{Open time proposals}$

- 10-fold improved sensitivity for TeV studies of the cosmos
 - \checkmark Analogous to the advance from EGRET to Fermi-LAT
- Angular resolution substantially better
- Detailed studies of Galactic cosmic-ray acceleration
- New sensitivity to the high-energy processes in blazar jets
- Astrophysics foundation and sensitivity for recognizing new fundamental physics — Sensitive searches for dark matter in its cosmic home
- Prototypes well along in development
- Construction soon to begin details also still being hashed out
- U.S. groups aim to play a significant role with medium-sized telescopes
- Broad access to CTA by scientists in participating countries
- Valuable role for a wide field of view instrument in the south with sensitivity to complement CTA and HAWC