

KM3NET/ARCA PROSPECT

R. Coniglione for the KM3NeT collaboration INFN - Laboratori Nazionali del Sud

MANTS meeting 1-2 October 2016

A telescope in the Northern Hemisphere

Higher density of sources in our Galaxy at negative declination.

Galactic objects well measured by Highfrom F. Vissani, F. Haronian and N. Sahakyan Astropart. Phys. 34 Energy gamma detector. Hadronic (2011) 778-783 arXiv:1101.4842 mechanism invoked for many sources to explain their emission (IC443, W44, RCW86, Galaxy mass distribution RXJ1713...) Source Density No counterparts Molecular clouds 12[Others **Binary Systems** AGNs 1.0 180 6.8 >25% >75% Weighted with the distance $1/r^2$ 0.2 RX J0852.0 Source -1.0-0.50.51.0 Declination

Figure 2: Continuous line: normalized mass distribution of the Galaxy, as a function of the declination. Dashed line, the same but weighted with the inverse squared distance from the mass.

KM3NeT/ARCA

Some Galactic sources/regions tested with KM3NeT/ARCA.

New track reconstruction is now available (JGandalf)

New (after LoI) preliminary and non official predictions shown in this talk

Predictions from up-going muon neutrino analysis

KM3NeT Letter of Intent at J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001 and arXiv:1601.07459

New track reconstruction JGandalf

V

New track reconstruction

Energy resolution from 27%@1-10 TeV to 16%@0.1-1 PeV

From our Galaxy

Investigated:

- Galactic Plane (GP)
 - (|I|<30° and |b|<4°)

Galactic Center (GC) Hess source

- The SNR RXJ1713
- The PWN VelaX

GP region with ||<30° and |b|<4°

GC region (Nature 17147/doi10.138)

Visibility

	declination	extension	Visibility*
GP	0° ÷ -50°	ΔΩ=0.146sr	77%
GC	-29°	R=0.45°	75%
RXJ1713	-40 °	R=0.6 °	86%
VelaX	-45°	R=0.8 °	95%

*For up-going muons with θ_{zen} >80°

Main assumptions

ARCA detector

- 2 building blocks of 115 strings each (1km³)
- depth 3500m (Capo Passero Sicily site)

Source assumptions

- Expected neutrino spectra from (consistent) the measured gamma spectra
- Source extension with homogenous distribution

Simulation assumptions

- Atmospheric neutrino background Honda (conventional) and Enberg (prompt) with knee correction (H3a) (see the Lol)
- Three years of atmospheric muon background simulated with MUPAGE
- All NC and CC neutrino flavours interactions simulated with ($v_{\mu}:v_e:v_{\tau}=1:1:1$)

• Up-going muon neutrinos analysis through the following steps:

- Preselection cut applied (cuts on reconstruction algorithm parameters)
- Boosted Decision Tree algorithm applied (only for RXJ1713 analysis)
- A maximum likelihood method applied for the discovery and sensitivity fluxes

Performance GP

March 2016: a new GC measurement

Petaelectronvolt proton source discovered by HESS at the Galactic Center (Nature 17147/doi10.138)

Dense molecular clouds present near the GC responsible of the hadronic origin of the high energy γ -rays detected

Performance GC

Performance GC

From first results improvement in the RXJ1713 discovery flux at 3σ of 10% results discovery at 3σ in 4 years (Lol 3σ in 4.5 anni)

Analysis not yet completed

What in the next future

soon combined data analysis ARCA-phase1 / ANTARES

Summary

New high resolution (<0.1°) track reconstruction now available

	3σ discovery	Preliminary results from up-going muon analysis	
GP	1.3 years		
RXJ1713	4 years	OUTLOOK Improvements of these results	
Velax 100 100 100 100 100 100 100 10	2.5 years	expected combining up-going muons & cascade events	
Gateric torginale tingrees	12 years		

Galactic plane is very promising for KM3NeT/ARCA

BACK UP SLIDES

FIRST RESULTS FROM ONE OF THE FIRST DUS INSTALLED

Comparison of calibration with LED nanobeacons and atmospheric muons in agreement. In situ nanobeacon calibration and on-shore laser calibration agree to \approx 1 ns

Rate of high coincidence events in the DOMs reflects the behavior of the atmospheric muon intensity as a function of the depth

18

THE DOM PROTOTYPE

DOM prototype deployed at Antares site April 2013

validation of DOM capabilities in situ

Coincidence Level

Proved that with a single DOM the selection of events from atmospheric muons is possible

Result published in Eur. Phys. J. C (2014) 74: 3056

