

Luminescence as a new detection method for Magnetic Monopoles

Anna Pollmann

Definition:

 excitation of transparent media by ionizing radiation giving light subsequently

Spectrum:

- Peaks at
 - ~ 290 nm
 - ~ 360 nm
 - ~ 420 nm
 - ~ 550 nm
- Temperature dependent

J. Phys. Chem. A, Vol. 101, No. 25, 1997 (UV irradiated purified water)

Definition:

 excitation of transparent media by ionizing radiation giving light subsequently

Spectrum:

- Peaks at
 - ~ 290 nm
 - ~ 360 nm
 - ~ 420 nm
 - ~ 550 nm
- Temperature dependent

Trotman et al., J. Chem. Phys. 85, 2555 (1986)

Definition:

 excitation of transparent media by ionizing radiation giving light subsequently

Spectrum:

- Peaks at
 - ~ 290 nm
 - ~ 360 nm
 - ~ 420 nm
 - ~ 550 nm
- Temperature dependent

Lifetime:

nanoseconds to microseconds

Definition:

 excitation of transparent media by ionizing radiation giving light subsequently

Spectrum:

- Peaks at
 - ~ 290 nm
 - ~ 360 nm
 - ~ 420 nm
 - ~ 550 nm
- Temperature dependent

Lifetime:

O(100)ns - O(1000)ns

Efficiency:

- *Baikal* 0.2 γ / MeV
- Quickenden 2.4 γ / MeV

Magnetic monopoles

elemental magnetic charge (Dirac)

 $g_D = e / 2 \alpha \approx 68.5 e$

- topological defects with huge mass created
 - shortly after the Big Bang 10^{13} GeV ≤ M_{MM} ≤ 10^{19} GeV
 - in intermediate stages of symmetry breaking $10^7 \text{ GeV} \le M_{MM} \le 10^{13} \text{ GeV}$
 - at accelerators (electroweak and other) $$M_{\rm MM}$ \sim {\rm TeV}$$
- acceleration in magnetic fields gives $E_{kin} \leq 10^{13} \text{ GeV}$
 - trapping around galaxy, sun, Earth $v \sim 10^{-3}$ / 10^{-4} / 10^{-5} c
- ionization power

 $E_{dep} \sim g^2$ (Muons: ~ Z² / β^2)

Monopole - Searches / Interactions

Non-relativistic

catalysis of proton decay required (Cherenkov light)

Mildly relativistic

Highly relativistic

indirect Cherenkov direct Cherenkov light light

7

Monopole - Searches / Interactions

7

Light yield of Monopoles

Light yield of Monopoles

Measurements

- dN_{γ}/dE_{dep} : luminescence efficiency
- τ : life times of excited states
- λ : wavelength spectrum

Dependencies

- temperature -50 +20°C
- radiation type (e⁻, ions, UV)
- impurities (air, surrounding materials)
- pressure

Measurements

- dN_{γ}/dE_{dep} : luminescence efficiency
- τ : life times of excited states
- λ : wavelength spectrum

Dependencies

- temperature -50 +20°C
- radiation type (e⁻, ions, UV)
- impurities (air, surrounding materials)
- pressure

In situ - 1

analyze late features in waveforms near vertex of HE events

see work by Anna Steuer (Mainz)

analyze waveforms of low energetic vertical muon events

- Cherenkov cone as trigger
- late hits from luminescence
- background from scattering,
 PMT noise, PMT afterpulses

In situ - 3

- device in open SPICE hole
- press to ice wall
- radiate the ice
- measure light

Luminescence from UV light:

Absorption:	220 nm	260 nm
Emission:	~ 340 m	~ 420 nm
Lifetime:	< 12 µs	1.6 s 4.2 s
Efficiency: d(InI)/d(InD)	< 1.11	1.11

Langford, Acc. Chem. Res. 2000, 33, 665-671

Final goal:

- water / ice sample from detector sites
- Z=68e charged and heavy ions
- accelerated to speeds below the Cherenkov threshold

Setup of first measurement

started with a simple setup at room temperature:

- $^{241}AM \alpha$ source with activity ~1.7 MBq
 - Soft γ-ray: 33-160 keV
 - 700-9000 photons / sec from luminescence expected
- photomultiplier
- drinking water

Further Applications

- Magnetic monopoles
 - non-relativistic < 0.1 c
 - low relativistic > 0.1c
- improving energy reconstruction
- correlated noise on very long time scales (milliseconds)
- dark matter annual modulation
- neutral exotic particles

Idea by Jerry Vavra / Stanford

analysis in the group of Kael Hanson¹⁶

- Iuminescence extends detection possibilities of water-Cherenkov telescopes
- started lab measurements
- started monopole search

Other efforts in monopole searches at IceCube:

- non-relativistic using proton decay signature
- high relativistic using direct Cherenkov light

