PINGU — Lol and beyond

Thomas Ehrhardt for the IceCube-PINGU Collaboration MANTS | Mainz | October 1st 2016

lceCube/DeepCore

PINGU Geometry Optimisation

previous:

- ▶ 40 strings w/ 60 DOMs each
- 20 m horizontal spacing
- ► 5 m DOM-DOM spacing

arXiv:1401.2046

- 40 strings w/ 96 DOMs each
- 22 m horizontal spacing
- ► 3 m DOM-DOM spacing

various conferences -150

current (arXiv:1607.02672):

- 26 strings w/ 192 DOMs each
- 24 m horizontal spacing
- 1.5 m DOM-DOM spacing

- reduced no. of holes to drill
- higher photocathode density
- performance just as good!

.200

E¹⁰

PINGU Science

- lower energy threshold to a few GeV \Rightarrow open up new physics opportunities
- 10^{23} close to 70k upgoing atmospheric Solar Potential neutrinos per year 1022 IceCube ERA/ICARU $[10^{21} GeV^{-1}]$ neutrino mass ordering and θ_{23} octant sensitivity tau production DAESALUS hnwhole 10^{19} probe unitarity of PMNS-matrix $(> 3k \nu_{\tau} \text{ per year})$ 10^{-3} 10^{-2} 10^{-1} 10^{0} 101 10² E_{ν} [GeV]
- + additional science (WIMP dark matter, Earth tomography, SNe)

 10^{7}

 10^{6}

104

103

 10^{3}

105 <u>E</u>

Detector Technology

- various sensor designs continuously studied
- possibility of using multiple-PMT optical modules:
 - 24 × 3 inch PMTs in 14 inch spherical glass housing
 - photon acceptance isotropic
 - potential to exploit directional information
- support structure

♦ [*]

Timeline and Logistics

 five-year period from construction start to full deployment anticipated (2-season deployment)

- submission of proposal to NSF foreseen for this fall
- detailed version of LoI short summary (arXiv:1607.02671) expected to be out shortly

	Cost (20 Strings)	Cost (26 Strings)
Drill refurbishment	\$5M	\$5M
Deployment (labor)	5M	\$5M
Instrumentation	25M	33M
Management & other costs	5M	\$5M
Total	39M	\$47M
Fuel	146,000 gal	190,000 gal

compared to orginal configuration: reduced no. of strings cuts costs significantly in several areas:

- \blacktriangleright no need for 3rd drilling season \Rightarrow reduced personnel costs
- ▶ hot water drill fuel, cables, logistical support expenses almost halved
- refurbish and reuse on-ice IceCube hot water drill instead of replacing

Atmospheric Neutrinos

- steady ν flux available over large range of neutrino energies E_ν and oscillation baselines L
- For vertically upgoing ν_µ, first survival probability minimum at E_ν ~ 25 GeV

Earth matter effects:

characteristic modifications of oscillation probabilities below \sim 10 GeV, depending on neutrino mass ordering (NMO)

u_{τ} Appearance—Signature

- expect > 3k ν_{τ} appearing per year
- ► increased PINGU density ⇒ improve discrimination between tau- and muon-type interactions
- search for energy-zenith angle dependent excess over no-ν_τ appearance hypothesis in cascade channel
- ▶ unique probe of |U_{τ3}|²
 ⇒ unitarity of neutrino mixing matrix

u_{τ} Appearance—Sensitivity

with expected ν_{τ} appearance from standard 3-flavour oscillations:

- expect to reach 5σ exclusion of no ν_τ appearance with a month of data
- expect better than 10 % precision after one year of measurement

NMO Asymmetry of Flux/Rates

- up to few 10 % differences in oscillation probabilities, depending on which NMO realised
- effect to 1^{st} order symmetric w.r.t. flip of NMO & $\nu \leftrightarrow \bar{\nu}$

but:

- ightarrow atmospheric flux $\Phi_
 u/\Phi_{ar
 u}\sim 1.3$
- x-sections $\sigma_{\nu N}/\sigma_{\bar{\nu}N}\sim 2$

massive O(Mton) detectors required for sufficient event statistics

 ν_{μ} survival

only fully deployed PINGU data shown

► NMO $\leftrightarrow \theta_{23}$ degeneracies for both NMO's

Thomas Ehrhardt | PINGU | MANTS 2016

- profit from taking into account signals in cascade & track channel
- good agreement between Asimov and pseudo-data (LLR) studies
- sensitivity strongly dependent on true value of θ₂₃ (amplitude of matter effect)

13

Atmospheric Oscillation Parameters

- \blacktriangleright 4-year octant sensitivity $\gtrsim 3\sigma$ if
 - \blacktriangleright IO: sin² $heta_{23} \lesssim 0.385$ or $\gtrsim 0.625$
 - NO: $\sin^2 \theta_{23} \lesssim 0.38$ or $\gtrsim 0.58$
- for first octant and NO, profit greatly from knowing the NMO

- ► precision of $\sin^2 \theta_{23}$ and Δm_{32}^2 measurement for different true $\sin^2 \theta_{23}$ and NO
- compared to projected accelerator constraints

Maximal Mixing

• number of years to exclude $\sin^2 \theta_{23} = 0.5$ at 90 % C.L.

Earth Tomography

- oscillations in matter affected by electron density \Rightarrow measure Earth's interior composition
- sensitive region same as for NMO measurement
- similar effect of 20 % improvement in resolutions
 and assuming 2nd octant 0

(g/cm³)

Supernovae

▶ $\mathcal{O}(10 \text{ MeV})$ instead of $\mathcal{O}(1 \text{ GeV})$ energies \Rightarrow below energy threshold

Different Detection Method

- search for short-term correlated increase in all DOMs' signal rates
- increased coincident hit probability in PINGU

 20×60 DOM configuration

- ullet \sim order of magnitude improvement of energy resolution compared to IC
- ▶ $\sqrt{2}$ detection sensitivity improvement for 8.8 M_{\odot} SN

Thomas Ehrhardt | PINGU | MANTS 2016

Dark Matter

- indirect detection via search for neutrinos from dark matter self-annihilation, e.g. WIMP
- \blacktriangleright PINGU can substantially enhance IceCube/DeepCore sensitivity to WIMP-proton scattering cross-section for WIMP masses $\lesssim 50~\text{GeV}$

- solar WIMP self-annihilation
- all-flavour analysis
- conservative, since based on standard lceCube/DeepCore analysis methodologies

PINGU Summary

- cost-effective extension to IceCube/DeepCore
- fewer-string configuration allows for rapid deployment and provides substantial cost reduction in several areas
- expands IceCube/DeepCore physics reach (ν_{τ} appearance, NMO, θ_{23} , Supernovae, Solar/GC Dark Matter) and opens up novel opportunities (Neutrino Earth Tomography)
- improved sensor design potentially benefits calibration, constraining of detector related systematics as well as physics studies
- NSF fall proposal in preparation

NMO—Akhmedov Plots

21

NMO Sensitivity—Brasilian Flag Plots

Determining Octant of θ_{23}

▶ years until wrong octant excluded at 90 % C.L.

Oscillation Parameter Contours IO

