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Multi-Messenger Astronomy
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opticalmicrowave X-rays gamma-rays  neutrinos       cosmic rays

opaque to photons; 
transparent to neutrinos 

  
 

Gravitational waves - ripples in space-time

The Universe is opaque for 1/5 of the EM spectrum



IceCube-Gen2 Facility
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Gen2  
High-Energy Array

Gen2 Surface Veto

IceCube

DeepCore

PINGU

Multi-component observatory: 
• Surface air shower detector 
• Gen2 High-Energy Array 
• Sub-surface radio detector  
• PINGU

A wide band neutrino observatory (MeV – EeV) using several detection 
technologies – optical, radio, and surface veto – to maximize the science 



Open questions for neutrino astronomy / Gen2 HEA
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• Resolve the source populations that produce the high 
energy astrophysical neutrinos detected by IceCube


• Identify the sources of the highest energy cosmic rays 


• Learn about the environments responsible for the highest 
energetic cosmic particles 


• Study of galactic and extra-galactic propagation of CR 
with neutrinos as tracers  


• Obtain a unique view into the explosion of stars


• Explore the very high-energy Universe when it was most 
active 



Geometry optimization
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•Several layouts under evaluation 
•Example: “Sunflower” geometry with different string spacings

•~120 new strings, 80 DOMs per string, instrumented over 1.25 km 
•~10 x IC volume for contained event analysis above 200 TeV



Extended surface veto 
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Potential gain for e.g. 75 km2 veto:  
~2x number of PeV tracks 
~2x precision in spectral index

Southern sky  
observable 
via surface veto



Performance: through-going muons
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PRELIMINARY



Penetrating muon background
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•Estimate effectiveness 
of outer-layer veto 
from IceCube data 

•2x increase in string 
spacing leads to ~3x 
increase in effective 
energy threshold

PRELIMINARY
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Predicting event rates in Gen2 9
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Event rates
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Event type 10–100 TeV 100–1000 
TeV 1–10 PeV >10 PeV

Contained 
cascades 0 (2.6) 20 (4.4) 15 (1.6) 2 (0.2)

Surface vetoed 
muons 0 (0) 9.7 (0.06) 4.8 (0.051) 1.2 (0.014)

Upgoing muons 100 (37) 55 (16) 11 (3.2) 1.6 (0.47)

Number of neutrinos per year in Gen2 (IceCube), assuming 
E2Φν = 0.95x10-18 (Eν/100 TeV)-0.13 GeV cm-2 sr-1 s-1 per flavor
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Discovering a point source with Gen2 11

PRELIMINARY



Resolving the mysteries of the UHE Universe
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todo list: 
•Connect to extra-gal. CR 
• Identifying the sources of       

neutrinos and thereby also of CR 

PRELIMINARY



Finding the sources of HE neutrinos
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PRELIMINARY



Probing acceleration environments
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•Synchrotron cooling in the sources affects muons more  

•Energy- and flavor-dependent cutoff, distinct from progenitor cutoff 

cf. Kashti & Waxmann 
PRL 95 181101



Probing acceleration environments
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Gen2 can detect a flavor-dependent cutoff at PeV energies!

PRELIMINARY



Point source sensitivity
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PRELIMINARY

•“Just a big IceCube” has 
~four times the point 
source sensitivity  

•Significant performance 
improvements expected 
from new sensors:  

Sensitivity to steady point sources

Timo Karg  |  mDOM & WOM Prototype Development  |  27 July 2015  |  Page  

Data Acquisition Concept – mDOM
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Dual optical sensor in an Ellipsoid 
Glass for Gen2 
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Φ = 300 mm 

16



New sensor designs for improved performance 
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D-Egg

• Directional information 
• More sensitive area per 

module 
• Smaller geometry  

Dual optical sensor in an Ellipsoid 
Glass for Gen2 
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Φ = 300 mm 

 30 cm 

• Directional information  
• More sensitive area per 

module

mDOM

Timo Karg  |  mDOM & WOM Prototype Development  |  27 July 2015  |  Page  

Data Acquisition Concept – mDOM
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36 cm

WOM

• more sensitive 
area per $  

• Small diameter 
• Lower noise rate

Timo Karg  |  mDOM & WOM Prototype Development  |  27 July 2015  |  Page  

WOM Concept

>Basic concept 
! Wavelength shifters (WLS) 

! Light concentration 

> Features 
! Better UV sensitivity 

! Large collection area 

! Low noise rate (few Hz) 

! Cost effective
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see also PoS(ICRC2015)1134

substrate

matrix

wavelength-
shifter

small PMT

adiabatic
light guide

wavelength shifter
coated cylinder

pressure housing

11 cm

LOM

• Small diameter 
• Directional info. 
• More area per 

module

13 cm



Preliminary timeline
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2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2025 … 2031

Today
Surface air shower

Phase 1 Deployment

ConstructionR&DR&D Design Phase

7-string DeepCore infill 
+ calibration devices 



The way forward
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•Science case maturing 

•Reconstruction performance improving 

•White paper in preparation  

•Converging to a multi-phase proposal
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Thank you!



Backup



Performance: starting events
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Downgoing neutrinos 24
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Surface veto technologies 26

• Deployment requires 
heavy equipment & 
power 

• Segmented 
• Operated at South Pole 

since 2007

IceTop tanks

1.8 m

Scintillator panels

• Easy deployment  
• Low cost (cheap 

materials and small 
PMTs) 

• Segmented 
• Prototype in testing at 

South Pole

3 m

See T17.5 (this session)
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Surface veto technologies 26

• Deployment requires 
heavy equipment & 
power 

• Segmented 
• Operated at South Pole 

since 2007

IceTop tanks

1.8 m

Air Cherenkov 
telescopes

• Not segmented 
• Low energy threshold 
• Low duty cycle 
• Prototype deployed at 

South Pole

1 m

Scintillator panels

• Easy deployment  
• Low cost (cheap 

materials and small 
PMTs) 

• Segmented 
• Prototype in testing at 

South Pole

3 m

See T17.5 (this session)
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Vetoing cosmic rays at the surface 27

See T17.5 (this session)

PRELIMINARY
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UV transmission in ice 28

tering cross section#. For detritus and mineral
grains with m ' 1.15 and r̃ ' 1 mm, I estimate Q '
2 and bp ' 0.018 m21. For biogenic particles with
m ' 1.05 and r̃ ' 0.35 mm, Q is so small that its
contribution to scattering can be neglected. By add-
ing the calculated contribution of molecular scatter-
ing by seawater,7 I obtain b 5 bw 1 bp ' 0.02 m21 at
a wavelength of 450 nm. This estimate is uncertain
due both to neglect of interactions among settling
particles and to the role of bottom currents, which
may stir up a suspension of sediments in a time-
varying way.

To model more accurately the wavelength depen-
dence of scattering from a distribution of particle
sizes, I assume that

bp~l! 5 A~400yl!1.7, (1)

where the exponent 1.7 is taken for small suspended
particles in the shallow ocean13 and applies through-
out the wavelength region of good transparency
~400–650 nm!. In Subsections 3.C and 3.D, I esti-
mate values of A for the NESTOR and DUMAND
sites.

C. NESTOR Site

Some of the earliest measurements of attenuation
spectra were made by Matlack,23 who used a dropped
device to make in situ measurements as a function of
depth in the Atlantic Ocean and at a few sites in the
Mediterranean Sea. More recently Khanaev and
Kuleshov24 collected a large number of water samples
from many depths at seven locations at 36° 37.29 N,
21° 299 E, southwest of Greece. They used a highly
collimated beam spectrophotometer on shipboard to
measure the attenuation coefficient at 16 wave-
lengths from 310 to 610 nm in water taken at depths
ranging from the surface to the bottom ~at approxi-
mately 4000 m!. To a depth of ;1500 m, attenua-
tion decreased, below which it became independent of
depth. For various samples, the attenuation
reached a minimum at wavelengths of 470–490 nm,
at values c~480! 5 0.025 to 0.045 m21. The open
diamond points in Fig. 1 are attenuation coefficients
for their clearest water sample @Fig. 2~d! of their pa-
per#. Their results were consistent with the earlier,
less complete results of Matlack.

The collection of water samples in plastic bottles
has two possible pitfalls: ~1! The water may be con-
taminated during the collection procedure; and ~2! a
downward flux of particulates is maintained in an
approximately steady state while in situ, but changes
when the sample is collected and brought on ship-
board. Specifically, the heavier particles may sink
before the measurement can be made, thus leading to
an underestimate of attenuation.

Using an uncollimated photostrobe with a 460-nm
interference filter25 to measure the 1ye transmission
distance, Anassontzis et al.26 obtained values of ab-
sorption length at depths greater than 3500 m at
three of the sites where Khanaev and Kuleshov24 took
samples. They found an average value of a21 5

55 6 10 m. I used its reciprocal a~460! 5 0.018 m21

and subtracted the component bw~l! that is due to
molecular scattering, from which I derived the value
A 5 0.016 in Eq. ~1!. This enabled me to convert the
attenuation spectrum of Khanaev and Kuleshov into
the absorption spectrum shown in Fig. 2 as open

Fig. 2. Values of absorption coefficient obtained by subtracting
scattering from measurements of attenuation coefficient
~NESTOR24 and DUMAND28! or of diffuse attenuation coefficient
~Smith and Baker7!.

Fig. 3. Values of absorption coefficient for purest water, South
Pole ice at depths of 830 and 970 m, Lake Baikal, and the DU-
MAND site near Hawaii and the NESTOR site southwest of
Greece. The solid curve is my estimate of the absorption spec-
trum for South Pole ice at a depth of ;2000 m where the dust
concentration is believed to be only approximately 30 ng g21.
SNO, Sudbury Neutrino Observatory.

1968 APPLIED OPTICS y Vol. 36, No. 9 y 20 March 1997

Price (1997). Applied Optics, 36(9)
Ackermann, M., et al. (2006), Optical 
properties of deep glacial ice at the South 
Pole, J. Geophys. Res., 111, D13203, doi:
10.1029/2005JD006687.
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