# "Sensitivity" or "GNN" paper: rationale, outline & discussion

Clancy W. James, MANTS, Mainz 2016









## Basic idea

More general paper on sensitivities and how detectors in South and North complement each other

- Figure of merit discussion:
  - Produce comparable figures between experiments (clarity)
  - Highlight complementarity (funding!)
  - Previous MANTS meetings use differential sensitivity plots
- To do this properly, we need close cooperation between experts
- Why not write a joint (GNN) paper on this?
- Other motivation:
  - Simplifies talks (just show plots, save thousands of words)
  - Simplifies papers (recent GW paper for two spectral models)
  - Makes MANTS feel like a worthwhile meeting



#### Current ways of comparing experiments GW150914





#### **Differential sensitivity vs models**

- Different spectra:
  - Pros: most strongly relates to the sensitivity estimates (~KM3NeT LoI)
  - Cons: infinite number of them, probably all wrong, requires on line per model, will cause arguments over which models, hides energy dependence
- Differential sensitivity
  - Pros: universal way readily apply to all models
  - Cons: can not be perfectly applied to any model, numbers tend to be larger (due to smaller applicable energy range)
- Previously discussed decided on differential sensitivity
- Still, better to voice objections now but this is last time!

# What classes of sources/searches?

- Current work: point sources
- Suggested minimal additions:
  - Extended sources / diffuse analysis (energy resolution vs angular resolution)
  - Transient sources (removes background, just acceptance)
- My personal thoughts:
  - Keep it simple smallest number is best, future experiments have not yet fleshed out their sensitivity estimates
  - Natural limit of diffuse source: sensitivity to 4 pi flux
  - Natural limit of transient sources: ~GRB, GW









#### Do we put technical details in the paper?

• Real question: who are we writing the paper for?









- Funding agencies / grant proposal reviewers: "I am doing this project with that experiment because it is more sensitive in this parameter space" – details get in the way IF they read the paper at all
- My proposal: target astro community and people with money
  - Sort out technical details first
  - Use common methods in paper
  - Do NOT include any detailed discussion of them



## **Technical details – differential sensitivity**

- UHE particle searches
  - ~Backgroundless
  - 90% Upper Limit =  $2.3/A_{eff}(E)/t$
  - Equivalent to differential sensitivity with bin width e
- Great!
  - Clear precedent in literature
  - Do it ourselves
  - Small-bin limit: diff. sens. ~ bin width, just rescale by actual bin width / e.





Sensitivity to steady point sources

# Time

- Why does time matter?
  - Some experiments operating longer than others / built before others (ANTARES->lceCube->KM3NeT->Gen2, ORCA->PINGU) + GVD???
  - Searches with different time-scaling (t vs t<sup>0.5</sup>)
  - Experiments with different efficiencies (livetime vs real years)
- Possible solutions (brainstorming, no real idea)
  - Plots with real years on x-axis (2015, 2016 etc)
  - Plots for common time interval, write down scaling with t
  - Plots with different assumed analysis times?





# Which experiments?

- The more the better!
  - Currently: ANTARES, IceCube (Chad & Javier)
  - KM3NeT: Recent work (Rosa/Agata)
  - Gen2: seen estimates by Markus Ackermann
  - GVD: find out this meeting?



- Expect we need a lead author from each collaboration. Others:
  - Science working groups
  - PCs
- When to get these other groups formally involved?



## Which data (real or simulated)?

- ANTARES & KM3NeT:
  - clear separation between cascade-like and track events
- IceCube:
  - Several different data samples used
- GVD? Gen2?

| ID         | Topology        | Containment | Energy Range <sup>a</sup><br>(TeV) | Zenith Range<br>(deg) | Data-taking<br>Period | Observables              | Reference        |
|------------|-----------------|-------------|------------------------------------|-----------------------|-----------------------|--------------------------|------------------|
| T1         | Tracks          | No          | >100                               | 90-180                | 2009-2010             | Energy, zenith           | (1)              |
| T2         | Tracks          | No          | >100                               | 85-180                | 2010-2012             | Energy, zenith           | (2)              |
| <b>S</b> 1 | Showers         | Yes         | >100                               | 0-180                 | 2008-2009             | Energy                   | (3) <sup>b</sup> |
| S2         | Showers         | Yes         | >30                                | 0-180                 | 2009-2010             | Energy                   | (4) <sup>c</sup> |
| H1         | Showers, tracks | Yes         | >50                                | 0-180                 | 2010-2013             | Energy, zenith           | (5), (6)         |
| H2         | Showers, tracks | Yes         | >20                                | 0–180                 | 2010-2012             | Energy, zenith, topology | (7)              |

Searches Combined in the Maximum-likelihood Analysis

The Astrophysical Journal, 809:98 (15pp), 2015 August 10

• Suggestion: let each experiment do whatever they like

(presumably similar to what is done now, so "as per \cite{...}") CW James, MANTS, Mainz 2016





- Will NOT be resolved at MANTS!
- But we may look at the way forward:
  - Which experiments (solve now?)
- Strategy
- Technical details (officially appoint experts: Chad, Javier, + ...)
- Target sources (at least raise suggestions; dark matter?)
- Time axis (???)
- Any other major discussion points?
- Q1: do we even want to do this?