Rickard Ström Uppsala University lars.rickard.stroem@cern.ch

UPPSALA UNIVERSITET

IceCube Starting Tracks and Southern Hemisphere

MANTs Meeting | I-2 October 2016

- Low-Energy *Time-Independent* Point Source Searches
- Example Veto Method
- Veto-Based Event Selection
- Results from combined search 100 GeV 100 TeV (4 years)
- Conclusions and Summary

Low-Energy Point Source Searches

- The Southern sky is ''terra incognita'' for the search of steady TeV-neutrino point sources in IceCube
- ANTARES has access to the Southern sky at these energies but is smaller (factor ~60)
- Previous Southern sky starting analyses have focused on energies above 100 TeV were the background is low
- Many interesting sources in the Southern sky, potentially at energies below 100 TeV,
- Point source sensitivity down to 100 GeV can be reached by using advanced veto techniques, i.e. looking for events starting inside the detector volume

Low-Energy Point Source Searches

Simulated signal event distributions in final event samples:

- Improved point source sensitivity for IceCube in the Southern sky
- Identify starting events search for clustering of events

Example Method - Causality Study in Veto

- Study causality of noise hits in outer layers relative to first coincident hit (reference) in the fiducial volume.
- Are the veto noise hits consistent with a particle traveling with the speed of light through the detector?
- Causality is studied for all pulses in two veto regions: top and side.

Study correlation of noise hits in the veto region

Example Method - Causality Study in Veto

- Study causality of noise hits in outer layers relative to first coincident hit (reference) in the fiducial volume.
- Are the veto noise hits consistent with a particle traveling with the speed of light through the detector?
- Causality is studied for all pulses in two veto regions: top and side.

Example Method - Causality Study in Veto

Veto-Based Event Selection

- Challenge: Reject background while still keeping lowenergy events with a reasonable pointing ~(1-2)°
- Two selections:
 - 100 GeV 10 TeV (2011-2014)
 - I0TeV I00TeV (2012-2014)
- Analyses combined using simple cut on reconstructed energy

Point Source Sensitivity

Combined Results - Unbinned Likelihood

F	-		Pre-trial
Source	RA	dec	-log10(pval)
HESS_J1616_508	243.6	-50.9	2.74
KUV_00311_1938	8.4 IceCube	-19.2 Preliminary	2.50
HESS_J1614_518	243.3	-51.6	2.13
PKS_0301_243	45.7	-24.3	1.88
NGC_253	11.6	-25.3	1.46

Hottest spot:

- R.A. 340°, Dec. -28° (best-fit $n_s = 14.6$, $\gamma = 2.63$),
- pre-trial p-value 1.02e-5 (-log10 → 4.99),
- post-trial p-value 21.6 % (preliminary)

Conclusions and Summary

- Southern sky is a challenge for IceCube, especially at low-energies
- A new data stream and two event selections were developed to select starting track events, utilizing veto methods.
- Application: IceCube point source searches in the Southern sky at energies as low as 100 GeV
 - Searching for a clustering of starting events
 - No evidence for localized neutrino sources found in data taken between 2011-2014

Backup

The IceCube Neutrino Observatory

- IceCube is a cubic-kilometer sized detector,
- Located in the ice cap at the South Pole, Antarctica,
- Monitors over I billion tons of ultraclear glacial ice,
- Operates in 4π mode,
- Detects Cherenkov radiation of neutrino induced charged particles traversing the ice.

Search for Clustering of Neutrino Candidate Events

• Unbinned maximum likelihood algorithm using 3 observables: Angular reconstruction, Angular uncertainty estimate, Energy proxy

• The total number of signal events is split evenly among the samples given their exposure time and expected signal statistics derived from the effective area

$$n_{S}^{j} = n_{S} \times \frac{\int_{0}^{\infty} dE A_{\text{eff}}^{j} (E, \sin \delta) E^{-\gamma}}{\sum_{i} \int_{0}^{\infty} dE A_{\text{eff}}^{i} (E, \sin \delta) E^{-\gamma}}$$

Test Statistics:

$$\mathcal{TS} = 2\ln\left[\frac{\mathcal{L}(\hat{n}_{\rm S}, \hat{\gamma})}{\mathcal{L}(n_{\rm S} = 0)}\right]$$

Wilks' theorem: χ^2 with 2 d.o.f. as sample approaches ∞

Source List of Known Gamma-Ray Emitters

Source list definition (total of 96 sources):

- All 84 Southern sky TeVCat sources in the stable catalogs 'Default Catalog' and 'Newly Announced',
- I2 additional source traditionally investigated by IceCube,
- Known gamma-ray emitting sources as observed by groundbased experiments such as VERITAS, MAGIC, and HESS.

Supernova Remnants

Pulsars