

Double Bang Reconstruction and Flavor Analysis

MANTs

October 2, 2016 Juliana Stachurska

- 1. Introduction
- 2. Double Bang Reconstruction
- 3. Analyses Overview
- 4. Summary and Outlook

Motivation

- only few tau neutrinos have ever been observed
- vanishing atmospheric component → tau neutrinos = astrophysical neutrinos!
- tau neutrinos needed for flavor ratio analysis → can constrain sources & production mechanisms
- current flavor analyses not directly sensitive to ν_τ content (ν_e-ν_τ degeneracy)

- v_{τ} interaction (1:1:1 ratio for astrophysical neutrinos expected)
- charged current (71%)
- tau decays into hadrons / electrons (83%)
- mean length: 50m x energy/1PeV

simulated 10PeV Double Bang event

Background

Cascades: all nc interactions v_e cc interactions v_τ cc interactions with unresolvable lengths

Tracks: v_µ cc interactions atmospheric muons 1. Introduction

Taupede algorithm

- maximum likelihood fit
- assumption: two cascades connected by τ lepton

input (seed): 1 cascade with vertex, direction, energy, time, estimate for tau length

Taupede algorithm

- maximum likelihood fit
- assumption: two cascades connected by τ lepton

input (seed): 1 cascade with vertex, direction, energy, time, estimate for tau length

Taupede algorithm

- maximum likelihood fit
- assumption: two cascades connected by τ lepton

input (seed): 1 cascade with vertex, direction, energy, time, estimate for tau length

Taupede — observables

2. Reconstruction

2. Reconstruction

region with $L_{\tau,reco}$ > 10, 20m looks good, mostly well-reconstructed problem: some events get misreconstructed to higher lengths

2. Reconstruction

region with $L_{\tau,reco}$ > 10, 20m looks good, mostly well-reconstructed problem: some events get misreconstructed to higher lengths

2. Reconstruction

region with $L_{\tau,reco}$ > 10, 20m looks good, mostly well-reconstructed problem: some events get misreconstructed to higher lengths

- currently 3 analyses with direct Double Bang reconstruction
- common: use same reconstruction algorithm
- differences: starting point, event selection, algorithm use, sensitivity range, goals
 - → complementary!

Analysis I

- Marcel Usner, DESY
- sample: 6 year HESE sample
- goal: measure all-flavor ratio with evidence for v_{τ} at > 90% C.L. in energy range 60TeV < E < 3PeV
- expectation: ~2 identifiable events with L>20m

- preselection: energy asymmetry
- particle ID based on length vs E₂
- define <u>sensitivity region</u>

Analysis I — example

3. Analyses

Analysis I — example

Analysis II

- Juliana Stachurska, Stony Brook → DESY
- sample: High Energy Cascades (2 years now, 4 more years in preparation)
- goal: separate cascade sample into v_τ -Double Bang and "single cascades" subsamples, lifting v_e - v_τ degeneracy in flavor ratio
- optimized for short tau lengths

- pre-selection: length, energy asymmetry
- remove misreconstructed events using <u>likelihood space</u> of reconstruction algorithm & <u>removing unphysical</u> <u>regions</u>

- pre-selection: length, energy asymmetry
- remove misreconstructed events using <u>likelihood space</u> of reconstruction algorithm & <u>removing unphysical</u> <u>regions</u>

Analysis II — outlook

Analysis II — outlook

Analysis II — outlook

→ need to add background simulation, try to lower length threshold

Analysis III

- Matthias Vraeghe, Ghent
- own event selection optimized for Double Bang
- select:
 - high energy,
 - high charge,
 - well reconstructed,
 - (almost) contained events
- BDT based on 6 variables
- select L > 50m, -0.998<A_E<0.8, energy loss profile
- goal: find and clearly identify high energy tau neutrino Double Bang interactions

1200

Distance (m)

1000

Analysis III — example

energy-loss profile of track-like background event: multiple energy depositions energy-loss profile of signal event: 2 major energy depositions

Analysis III — expectations

0.34 signal events/year

~0.24 background events/year

background has low statistics / high uncertainty

- only ~0.3 identifiable tau neutrino interactions per year
- need tau neutrino fluxes / limits to constrain flavor ratio and neutrino production models
- with currently 6 years of data, tau neutrino detection with IceCube is around the corner
- 3 different analyses currently underway

Stay tuned for upcoming results!

Variables:

total charge, # charge peaks, duration, jumpiness (movement of COG), early charge ratio (first 100ns), starting Z position

Analysis I — expectation

@ HESE flux: $\Phi(E)=1.5 \times 10^{-8} (E/100 TeV)^{-2.3} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$, $v_e: v_\mu: v_\tau = 1: 1: 1 \text{ ratio:}$ ~50% v_τ detection probability at 95% CL

Muon vs. Tau Neutrinos

