IceCube Flashers

Dawn Williams
University of Alabama
IceCube Bootcamp 2016
Madison, WI

IceCube

Strings are numbered 1-86

DOMs are numbered 1-60, top to bottom (in ice)

Surface (IceTop) DOMs are numbered 61-64, not used in flasher analysis

IceCube Strings

IceCube Digital Optical Module (DOM)

Every DOM in IceCube is equipped with flasher LEDs

This gives us a controlled light source at every location in the detector

Calibration: from photon to data

Propagation through ice

We use flashers:

- To verify that DOMs are properly connected and functioning during commissioning
- 2) To verify the detector geometry
- 3) To study the optical properties of the ice
- 4) To study the response of the DOMs themselves

Flasher references

 https://wiki.icecube.wisc.edu/index.php/ Flashers

 https://wiki.icecube.wisc.edu/index.php/ CDOM Info

LED Flasher Board

12 LEDs

Arranged in pairs, evenly spaced 60° apart

1&7, 2&8, 3&9, 4&10, 5&11, 6&12, going clockwise seen from above

1-6 are tilted, upward at about 45° from horizontal

7-10 are horizontal

Flasher properties

 The vast majority of IceCube LEDs are ETG-5UV405-30, nominally 405 nm wavelength, actually 399 nm, FWHM of 14 nm

cDOMs

- 8 DOMs each on string 14 and string 79 have multiwavelength flashers called cDOMs
- For the remainder of this lesson we will use the standard 400 nm flashers

Flasher properties: Angular emission profile (beam width)

- Nominal beam width is 30° in air
- In ice, accounting for refraction from air to glass and glass to ice, the beam width is 10°
- Can be modeled as a 2-D Gaussian with $\sigma = 10^{\circ}$ in both directions

Beam Pattern

Flasher operating parameters

Parameter	Allowed values	Description
string	1 - 86	String where flashing DOM is located
DOM	1-60	Flashing DOM number
brightness	0 - 127	LED driver current intensity, up to 240 mA
width	0 - 127	2x duration of LED current pulse, in ns
mask	0001 - 0FFF	Hex representation of bitmask controlling which LEDs flash
rate	0 - 610	Rate of LED flashes in Hz

Flasher operation: String and DOM

- Multiple flashers can be run simultaneously
- The data acquisition system can withstand about 3x the normal background rate from muons (~70 bright flashing DOMs simultaneously)
- A typical run might have 4-6 flashers simultaneously
- It is not advised to have neighboring flashers on the same string run together
- Old DOMs (produced in 2004 and 2005) have "afterburst" properties which make them difficult to run
- Flashers cannot be synchronized using the current firmware

Running flashers: brightness and width

- Maximum photon output per LED is 1.17e10 photons per flash
- With all 12 LEDs running this is about equal to a 500 TeV cascade
- The brightness and width parameters determine the photon output
 - Width: duration of driver current, effectively 10-70 ns
 - Brightness: amplitude of driver current, up to 240 mA

Brightness setting —— B=0

—**●**— B=1

—**●** B=2

—**●**— B=3

—● B=4

B=40

—• B=127

How light output scales with brightness and width

Flasher light output model

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash LED 7 only

HEX mask is 0064

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash all tilted LEDs

HEX mask is 003f

Running flashers: mask

The 12 LEDs can be run in an combination. Each LED is controlled by a bit, and the "mask" is the hex representation of the bits

Example: flash all horizontal LEDs

HEX mask is 0fc0

Running flashers: rate

- Maximum rate is 610 Hz, lower rates are 610 Hz divided by a power of 2
- The setting in the configuration is an integer, the actual value of the rate is the next lowest value to that integer which is 610 divided by a power of 2
- So for example if the rate setting is 2, the actual rate is $1.191 \text{ Hz} = 610 \text{ Hz}/2^9$

Flasher data processing

We will now look at some flasher data and do some exercises to look at the pulses detected by neighboring DOMs from a flasher.

