HS - Madison Bootcamp 2016

June 11, 2016

© 2015-2016 Kael HANSON

1 Objective

Explain IceCube low level hardware through examination of the low level data product hitspooling.
This will be presented as a live notebook so please ask questions as I am going - we can explore
the data interactively!

2 Intended Audience

This notebook is given as a short 45-min course for the IceCube Bootcamp series to incoming stu-
dents to IceCube or those otherwise needing some introduction to IceCube and IceCube software.
Some basic familiarity with Python is assumed to understand the code presented here.

3 Hitspooling
3.1 Why are we looking at hitspool data?

It's raw and it’s simple. The idea is that you get very close to the metal and can appreciate how the
detector works at a low level without the layers of (eventually very useful) decoding, calibration,
and analysis software. Plus it uses some Python utilities that one doesn’t often use in high-level
code (bit stuffing routines, for example).

3.2 What is hitspooling?

¢ Each IceCube DOMHub has a 2 TB hard disk spinning away ... what a waste to not use
that;

¢ The data rate of hits from a Hub is about 2 MB/s — in principle 1 million seconds of storage;

¢ This is RAW as RAW gets - only trigger is the DOM MB SPE/MPE trigger (and then there
are beacon hits)

* A good way to save very low threshold data for use by external triggers

* Supernova DAQ (latency about 5-10 minutes)

¢ HESE triggers

* GRB

¢ FERMI triggers

3.3 How does it work? A picture...

DOM
w o SN N

StringHubs
80in-ice, 6 Deep Core, 10 IceTop

g.::lt Subtriggers Se:(?ndary
S bulder BUEER
5%) Global)
Q@ @ Trigger g
. Analys's
Joint Clients
Event
Builder .
Filtering
" Clients
Run %

Database

To Local Tape To Satzllte

Detector Dataflow

The StringHub process in the DAQ is continuously reading out hit buffers from the DOMs
(along with the supernova scalers, DOM slow control monitoring, and performing periodic
TCALs). The hit data is lightly processed and then sent to a sort tree where all DOM channels
readout by that Hub are merged into a single time-ordered list. This is conventionally called the
StringHub Frontend. The hits are then passed to the StringHub Backend or Sender as Dave G calls
it. The Sender puts the full hits into a large list but then extracts some channel and time infor-
mation and sends that to the trigger. If the trigger spots an interesting pattern of hits (it merges
these streams from all DOMHubs and looks over the entire in-ice or IceTop array) it generates a
ReadoutRequest for the EventBuilder which then will go back to the Hubs and ask for the full hit
information in a time window (-4 ps to +6 ps) around the trigger.

That is the classical DAQ. The Hitspool extension simply puts a T in the link between frontend
and backend and the other output path of the T is written to local disk. The bigger effort of the
Hitspool system is the architecture which pulls the data from the hub-resident disk files upon
external request. I'm not going into details here - if you are interested you can read the PhD thesis
of David Heereman.

3.4 Hitspool in the Data Warehouse

We will start here with hitspool files already extracted and transferred to the Madison Data Ware-
house. The files are contained in /data/exp/IceCube/YYYY/internal-system/hitspool
where YYYY is the 4-digit year. There are now several possible origins:

* Supernova alerts - these have a filename like SNALERT
¢ HESE triggers - HESE

¢ Anonymous - I guess test triggers ANON

¢ Solar Flare FERMI trigger

4 Python Code

So let’s get to business! First the standard import sequence - everything is standard Python here
except for the slchit and hspack modules which I wrote. It’s good practice to put code in
library modules for later easy re-use. I find the notebook format to be very seductive so I struggle
to stick to this rule all the time.

Please note that I am using Python3 viz. Python2 - due to minor but nonetheless annoying
incompat between 2 and 3 this code will not work on Python?2.

In [37]: import numpy as np
import pylab as plt
import math, os, re, struct
import datetime
import hspack, slchit
tmatplotlib inline

I am going to define some file locations but these are local to my laptop’s filesystem so will
need to be changed for you. We will be looking at hits from String 22 only. The hitspool files come
as a tarball of binary files divided up by Hub. There may be one or more files per hub. In the case
of this hitspool event there should be 7 15-second files per hub.

In [2]: dirtop = "/Users/Kael/Documents/IceCube/hitspool"
a_dir = "SN20140815_062550"
a_hub = "ichub22"
a_file = "HitSpool-19.dat"

4.1 A Look at Basic HitSpooling Structure
4.1.1 The TestDAQ Header

Let’s take some baby steps to show you how easy this is. Hitspooling data is essentially a long list
of binary formatted DOM delta compressed hits concatenated together in a file and separated by
some verbose headers. Let’s start by explaining the bitstream structure of the so-called TestDAQ
header:

Offset Type Length Description

0 i 4 Record length inclusive of this header
4 i 4 Record type identifier

8 q 8 48-bit mainboard ID

16 X 8 8 bytes of padding zeros

24 q 8 64-bit timestamp

Now let’s verify this on real data:

In [3]: fhs = open(os.path.join(dirtop, a_dir, a_hub, a_file), 'rb') # Must use 'rl
buf = fhs.read(54)
struct .unpack (">1ig8xg", buf[:32]) # Get to know pack/unpack facility - es:

Out[3]: (54, 3, 175849839247268, 195495374273500404)

Some comments:

* Record length is 54 which means that there are 22 additional bytes in this record - get to this
in a nanosecond

* Record type is 3 - always 3 for hitspool

* Mainboard ID is some long integer number here and one of 4 ways DOMs are referenced.
There is a long and somewhat amusing history on DOM names. Most everyone uses the
OMKey namespace for DOMs but there is also

¢ The production ID - an 8-character code which contains information on when and where the
DOM was made and what kind of DOM it was (long penetrator, short penetrator, or IceTop
qualified which means it passed additional cold testing). Consult IceCube DWG 9000-0038
for decoding.

¢ The mainboard ID - this is actually derived from hashing a serial number in the nonvolatile
flash on the DOM. There are two so actually the DOM has the possibility to masquerade
as someone else but normally the 2nd flash is not used for boot unless there is a hardware
failure on the first;

¢ The OMKey name - this is string and position on string, 1 being at the top and 60 being at
the bottom. Note that IceTop DOMs are numbered 61-64, 61 and 63 are the high gain DOMs,
62 and 64 the low gain DOMs.

* Nickname - each and every DOM has a nickname. Not just for amusement, it is easier to
remember exceptional channels by their name as opposed to one of the other identifiers.

¢ Timestamp is linked to UTC time - it tells you the number of 0.1 ns ticks since the beginning
of the year.

There is a nicknames class in the hspack module which reads in a file database called
nicknames.txt (available in the pPDAQ config project) and can do various lookups for you.

In [4]: recl, fmtid, mbid, utc = struct.unpack (">iig8xg", buf[:32])

hexid = "%12.12x" % mbid
names = hspack.lookup (hexid)
hittime = datetime.datetime (2014,1,1) + datetime.timedelta (seconds=1E-10*ut
print (names, ":", hittime)
('9fef3b33bfad', 'TPO9P3737', 'Mad_Monty', '22-28"') : 2014-08-15 06:25:37.427350

4.1.2 The Compressed Hit / Soft Local Coincidence (SLC) Structure

We still have 22 bytes to go in this record. These bytes are almost exactly what comes out of the
DOM, there is a bit of reordering done in the StringHub process. The raw data format is:

Offset Type Length Description

32 h 2 Version ID - should be 1

34 h 2 Pedestal flag - if 1 then no ped subtract; 2 ped subtraction in DOM
36 h 2 Some flag which I now forget the meaning

38 q 8 48-bit DOM clock counter 40 MHz frequency

46 I 4 Compressed word 1

50 I 4 Compressed word 3

LS

https://docushare.icecube.wisc.edu/dsweb/Get/Document-7442/DOM%20Serial%20Numbers.pdf

The last two compressed words give information on which triggers fired in the DOM and
chargestamp information. The authoritative document on the format of these words, as well as the
secrets behind the Delta 1-2-6-3-11 lossless waveform encoding is Delta Compressor Data Format
and Processes. If you want to understand the trigger bitmask you will need to read the DOMAPP
CPU Firmware API Document. I do remember that bit 0 is SPE trigger (the most common), bit 1
is MPE, and bit 2 is the forced trigger.

We dump out first the raw bits but then use the utility decoders found in the s1chit module
to gain more insight into this hit - we know when and where it occurred but what caused it and
how big was the PMT pulse? The trigger below is 1 which corresponds to bit 0 and only bit 0
being set so this was an SPE trigger. The chargestamp for in-ice DOMs (different for IceTop) is a
sequence of 4 values which inform the location of the peak sample in the FADC: the 1st number
gives the sample index of the peak sample relative to the trigger (but then you also have to ac-
count for FADC pipeline depth), and quantities 2, 3, and 4 give the samples around the peak and
including the peak. Note that the FADC is not zero subtracted so there is going to be a baseline of
approximately 127 which these samples ride on.

In [5]: print ("Raw dump: %x %$x %$x %6.6x %8.8x %8.8x" % struct.unpack (">3hg2I",

hit = slchit.SLCHit (buf)
print ("Trigger:", hit.trigger, "Chargestamp:", hit.chargestamp)

Raw dump: 1 2 1 ¢51d6123f9b 8004000c 3al5lc8c
Trigger: 1 Chargestamp: (7, 133, 142, 140)

That’s about all that we can do for SLC hits. The other bits in the compressed header will
simply tell you that there is no waveform information and no LC bits set. In order to look at non-
trivial information here we will have to hunt down a waveform bearing hit which had a neighbor
to setup the HLC condition. I will just keep on reading in records from the file until I find a record
which when decoded says it has waveform information. Note that, were I speed-optimizing I
would probably opt to not decode the record and use the knowledge that SLC records are always
54 bytes long - but that is a little cryptic so let’s do it this way:

In [7]: while True:
buf = fhs.read(54)
recl, fmtid, mbid, utc = struct.unpack (">iig8xg", buf[:32])
buf += fhs.read(recl-54)
hit = slchit.DeltaCompressedHit (buf)
if hit.fadc_avail: break

4.2 DOM Raw Waveforms

Gotcha! Now we have a hit that claims to have waveform information. There is another set of
slides which should give some details on the waveform capture hardware of the IceCube DOM
but let me again summarize here in case those slides are not available.

421 ATWD - The Analog Transient Waveform Digitizer

First there are two ATWDs per DOM. These are custom-designed chips from the late 90’s early
2000’s which have 4 channels of 128 analog sampling capacitors. When the ASIC is launched,

5

https://docushare.icecube.wisc.edu/dsweb/Get/Document-20568/delta_123611_format_and_processes-V1.1.pdf
https://docushare.icecube.wisc.edu/dsweb/Get/Document-20568/delta_123611_format_and_processes-V1.1.pdf
https://docushare.icecube.wisc.edu/dsweb/Get/Document-15988/DOMAPP_CPU_FPGA_interface.pdf
https://docushare.icecube.wisc.edu/dsweb/Get/Document-15988/DOMAPP_CPU_FPGA_interface.pdf

input voltages are sampled and held analogically on the caps at a settable rate of 100’s of MHz -
we use a setting which corresponds to about 290 MHz. When the analog sampling is complete, a
relatively slow ADC comes along and converts the capacitor voltages to a 10-bit digital quantity.
In the case of IceCube there are 4 channels because we want to extend the dynamic range beyond
the 10-bits to span a factor of about 10,000 which is near the dynamic range of the PMT:

¢ Channel 0 is the high-gain channel: 16 x amplification before the ATWD
¢ Channel 1 is the mid-gain channel: 2x

¢ Channel 2 is the low-gain channel: 0.25x

¢ Channel 3 is the swiss army knife channel - used for other things

Why are there two ATWDs you ask? (A) if one fails there is always another one; (B) deadtime
- the ATWD samples relatively fast for hardware of its time and is lower power. But, you pay the
piper in the ability to only capture about 450 ns of PMT pulse and there is a significant deadtime
in the digitital conversion - about 30 us per channel. If another pulse comes along 10 us later
you would miss it. The dual-chip solution helps here. The ATWDs operate in ping-pong mode
whereby chip A and chip B always alternate in triggering. There is kind of a funny edge case
where readouts can happen in inverted order - you might actually get hits that appear slightly out
of time order - due to the variable conversion time. If for example chip A starts a conversion in
which all 3 gain channels are readout, but chip B starts 50 s later and only reads out the high gain
channel, chip B will actually get inserted into the data stream first. Fortunately, the StringHub
works this out for you so you don’t have to worry about it.

4.3 FADC - The “Fast” ADC

Because of the limited capture of the ATWDs, the DOM has a third digitizer - a commercial
pipelined AD9215 10-bit, 40 MSPS A/D converter from Analog Devices. In principle it could
keep on capturing until memory got filled but it is fixed in hardware to always deliver 256 sam-
ples - 6.4 s depth. It has limited dynamic range relative to the multiple gain ATWD and so is
relatively susceptible to digital overflow.

4.4 A/D Pedestals

A quick note on pedestals. Both the ATWD and FADC are readout as unsigned quantities. To
avoid overflows they are riding on a non-zero pedestal. The pedestal in the ATWD is rather
complex and varies sample to sample. For this reason, at the beginning of each run, the DOMApp
CPU application acquires several hundred waveform captures with no input (any pulses present
by accident are actually rejected by the algorithm) to build up the average pedestal pattern. It then
stores the pattern in an FPGA register which is then used by the firmware to hardware subtract out
the pattern for each waveform acquired. A bias is subtracted from the pattern so that the ATWD
ideally sits around 128 samples with shorted input.
The FADC also has a pedestal but it is a fixed flat pattern also about 128 counts high.

4.5 Delta Compression

The ATWD and FADC waveforms are losslessly compressed using sample difference and bit com-
pression. Not enough time to cover here. The s1chit module contains a decoder for this encod-
ing scheme. Use it as a black box - it works, even though I wrote it I would have a hard time to

explain it. Anyway, decoding takes some time so I force the user to explicitly request a decoding.
There are more elegant ways of doing this in Python - TODO.

In [8]: print ("Trigger mask ", hit.trigger)
print ("FADC available", hit.fadc_avail)
print ("ATWD available", hit.atwd_avail)
print ("LC bits ", hit.lc)
print ("ATWD Chip ", hit.atwd_chip)

hit.decode_waveforms ()
t = np.arange(128)x3.3
plt.plot(t, hit.atwd[O0], '.-', ms=b5)
plt.grid()

plt.xlabel ('Sample time (ns) ")

plt.ylabel ("ATWD count (a.u.)")

Trigger mask ... 1

FADC available ... True
ATWD available ... True
LC bits ... 1

ATWD Chip ... 1

Out[8]: <matplotlib.text.Text at 0x1d253e3f320>

El:ll:l]]]] 1]]]

I
—]
1

190

180

170

160

ATWD count {a.u.)

150

140

130 i i i i i i i i
a a0 100 150 200 250 300 350 4040 450

Sample time (ns)

OK, cool so we just got our first waveform but you may notice that it’s a bit, uh, rotated relative
to how normal PMT pulses look (the PMT multiplies electrons, not positrons, so the pulse should

7

be negative going). It also happens to be backwards in time. OK we can fix that with NumPy’s
array functions - good opportunity to introduce you to some array manipulation in Python. Note
that what comes from the hit is a plain-old Python 1ist type but it is easy enough to construct a
full-fledged NumPy array:

In [9]: atwdO_raw = np.array(hit.atwd[0], 'd') # The 'd' means convert it to 64-bit

Now we can do some syntatically compact ops on the array - let’s invert it and time reverse it
but also try to set the baseline to zero. This is not safe in general but I will assume the following
samples are just noise rattling around zero.

In [10]: ped = np.average (atwdO_raw[0:807)

atwd0 = ped - atwdO_raw[::-1]
plt.plot(t, atwdO, '.-")
plt.grid()

plt.xlabel ('Sample time (ns) ')
plt.ylabel ("ATWD count (a.u.)")

Out [10]: <matplotlib.text.Text at 0x1d2547£65c0>

1|:| 1 1 1 1 1 1 1 1

ATWD count {a.u.)

_:||'|:| 1 1 1 1 1 1 1 1
Q 50 100 150 200 250 200 350 400 450

Sample time (ns)

Ah, that looks better. Notice how close the pulse is to the extreme left edge. The ATWD style
of SCA has been replaced by samplers which continually sample over the analog capacitors and
get stopped on a trigger as opposed to started. This gives ample pre-trigger window and obviates
the need for things like the IceCube DOM'’s delay board which delays the signal going into the
ATWD for 72 ns to allow the ATWD to start before the pulse arrives. Even then we are just at the

edge.

You know what? Let’s try to put the samples into physical voltages - we will make the ATWD
an oscilloscope. Disclaimer: please don’t try this at home: getting calibrations good to the few
percent level requires much more work, but this illustrates the basic concepts. Needed for this are

the following pieces of general information:

e ATWD digital gain is about 2.2 mV per count;
* 16 x amplifier between the ATWD and the PMT signal input connector.

That’s it!

In [11]: vO = atwdO * 0.0022 / 16
plt.plot(t, vO, '.-")
plt.grid()
plt.x1im((0, 200)) # Tedious to look at whole waveform - zoom into pulse
plt.xlabel ('Sample time (ns) ')
plt.ylabel ('Voltage (V) ")

Out[1l1l]: <matplotlib.text.Text at 0x1d255b89358>

0,000

=0.002

=0.004

Vaoltage (V)

=0. 006

=0.008

Q i 100 150 200
Sample time (ns)

OK, but wait a second. How do we figure out how many electrons came out of the PMT?
We have a voltage and we need a charge. The PMT is a current source which gets turned into a
voltage by the front-end impedance of the DOM MB which is about 47 2. You remember Ohm’s
Law, right? I = V/R and charge, Q, is the integral of the current:

Q=Y oAt

9

In [18]: g = —-sum(v0 / 47) %= 3.3E-09
g _spe = 1.602E-19 » 1E7
print ("Charge is {:.1f} p.e.".format(q / g_spe)) # This is the Python3 w:

Charge is 1.7 p.e.

4.5.1 FADC

Nominally 1 mV per FADC count and 15 x amp gain in front. However, the amplifiers are strongly
shaping at signal frequencies so the pulses are broadened.

In [36]: fadc = np.array(hit.fADC, 'd")
ped_fadc = np.average (fadc[50:])
t_fadc = np.arange (256) %25
v_fadc = 0.001+* (ped_fadc - fadc) / 15
plt.plot (t_fadc, v_fadc, '.-")

plt.grid()
plt.x1im((0, 1000))
g _fadc = -sum(v_fadc / 47) » 25E-09

print (g_fadc / g_spe)

1.24044489936

00002 ; T T T

0. 0000

-0.0002

=0. 0004

=0. 0006

=0. 0008

=0.0010

=0.0012

=0.0014

~0.0016 ' ' ' '
0 200 400 600 EOO 1000

10

	Objective
	Intended Audience
	Hitspooling
	Why are we looking at hitspool data?
	What is hitspooling?
	How does it work? A picture …
	Hitspool in the Data Warehouse

	Python Code
	A Look at Basic HitSpooling Structure
	The TestDAQ Header
	The Compressed Hit / Soft Local Coincidence (SLC) Structure

	DOM Raw Waveforms
	ATWD - The Analog Transient Waveform Digitizer

	FADC - The `Fast' ADC
	A/D Pedestals
	Delta Compression
	FADC

