Modeling the South Pole Ice

Dmitry Chirkin, UW-Madison

AMANDA-A: scattering on air bubbles!

Optical Properties of the South Pole Ice at Depths Between 0.8 and 1 km

P. Askebjer, S.W. Barwick, L. Bergström, A. Bouchta, S. Carius, A. Coulthard, K. Engel[§], B. Erlandsson, A. Goobar, L. Gray[§], A. Hallgren, F. Halzen[§],
P.O. Hulth, J. Jacobsen[§], S. Johansson, V. Kandhadai[§], I. Liubarsky[§], D. Lowder, T. Miller, *P.C. Mock[†], R. Morse[§], R. Porrata[†], P.B. Price, A. Richards, H. Rubinstein[‡], E. Schneider[†], Q. Sun, S. Tilav[§], C. Walck & G. Yodh[†]

The optical properties of the ice at the geographical South Pole have been investigated at depths between 0.8 and 1 kilometers. The absorption and scattering lengths of visible light (~515 nm) have been measured *in situ* using the laser calibration setup of the AMANDA neutrino detector. The ice is intrinsically extremely transparent. The measured absorption length is 59 ± 3 meters, comparable with the quality of the ultrapure water used in the IMB and Kamiokande proton-decay and neutrino experiments and more than two times longer than the best value reported for laboratory ice. Due to a residual density of air bubbles at these depths, the trajectories of photons in the medium are randomized. Assuming bubbles are smooth and spherical, the average distance between collisions at 1 km depth is about 25 cm. The measured inverse scattering length

on bubbles decreases linearly with increasing depth in the volume of ice investigated.

Diffusive approximation

scattered absorbed

Measuring Scattering & Absorption

- Install light sources in the ice
- Use light sensors to:

- Measure how long it takes for light to travel through ice
- Measure how much light is delayed
- Measure how much light does not arrive
- Use different wavelengths
- Do above at many different depths

ACKERMANN ET AL.: OPTICAL PROPERTIES OF SOUTH POLE ICE

depth [m]

Wavelength dependence of scattering

3-component model of absorption

Ice extremely transparent between 200 nm and 500 nm

Absorption determined by dust concentration in this range

Wavelength dependence of dust absorption follows power law

A 6-parameter Plug-n-Play Ice Model

Ice layer parametrization

Trapped air bubbles

Mie scattering theory

Approximation to Mie scattering

Simplified Liu:

 $p(\cos\theta) \sim (1 + \cos\theta)^{\alpha}$, with $\alpha = \frac{2g}{1-q}$

Henyey-Greenstein:

$$p(\cos \theta) = \frac{1}{2} \frac{1 - g^2}{[1 + g^2 - 2g \cdot \cos \theta]^{3/2}}$$

Mie:

Describes scattering on acid, mineral, salt, and soot with concentrations and radii at SP

Dust logger

Dust logger discovers ice tilt

Correlation of fitted optical properties with dust logger data

Merged dust log

SPICE model fit

Photon tracking with tables

- First, run photonics to fill space with photons, tabulate the result
- Create such tables for nominal light sources: cascade and uniform half-muon
- Simulate photon propagation by looking up photon density in tabulated distributions
- \rightarrow Table generation is slow
- → Simulation suffers from a wide range of binning artifacts
- → Simulation is also slow! (most time is spent loading the tables)

Direct photon tracking

photon propagation code (ppc) or OpenCL simulation (clsim)

propagate photons directly when needed

7 (1+6) strings of flasher data

gray band: scaled merged dust log

Ice anisotropy

Scattering example (5% anisotropy)

Hole ice cameras

AMANDA:

Swedish camera deployed in 1998 in AMANDA hole 13

IceCube:

Bubble camera deployed in the 2006/7 season with string 57

Swedish camera deployed in the 2010/11 season with the last string (80)

Things we learned

Ice anisotropy

Ice tilt 31