

The calibration of the ARA detector using TA Electron Light Source

23rd, July, 2015, ARA Col. Meeting

Purpose

1962: Askaryan predicted coherent radio radiation from excess negative charge in an EM shower (~20% due to mainly Compton scattering and positron annihilation)

\rightarrow Askaryan effect

 2000: Saltzberg et al. confirmed the Askaryan radiation experimentally with the SLAC accelerator

P. W. Gorham et al., PRL 99, 171101(2007)

Purpose: Understanding of the Askaryan signals Detector calibration

End to end calibration with the TA LINAC

LINAC at Telescope Array (TA) site @Utah

Characteristics of Askaryan radiation

Coherence (signal power Vs. electron number)

- Angular distribution
- Polarization

Expected angular distribution and the target structure R. Gaior Cherenkov angle in ice (56°)

 Angular distribution is wide due normalized power 230 - 430 MHz to short electron charge excess 800 - 1000 MHz distribution 0.8 ✓ Peak is not Cherenkov angle (56°), but shifted due to the 0.6 effective shower length 0.4 0.2 Cherenkov Angle α=30° **α=60°** 0 50 40 60 70 80 90 angle relative to beam [deg] measured angle Extendable: 2-12m angle in target The ice target has to be inclined for light to get **0** MeV electrons out and to observe more easily iα

Ice target and configurations

1 m

- 100 x 30 x 30 cm³
- Easily rotatable structure
- Easily movable on a rail
- Plastic holder for the ice has a hole underneath for the beam

Main configurations
With ice (30°, 45°, 60°)
No target

40 MeV electron beam line

Sice

TA LINAC

- ✓ 40 MeV electron beam
- ✓ Maximum electron number per bunch: 10⁹ → 160 PeV EM shower
- ✓ Pulse frequency: 2.86 GHz
 → pulse interval: 350 ps
- Bunch train width was optimized to ~2 ns
- ✓ Beam spread: ~4.5 cm
- Trigger signal available

²³rd, July, 2015, ARA Col. Meeting

M. Relich

Expected electric field

K. Mase

10

Expected waveform

Confirmation of the detector simulation

15% difference

Signals observed

Comparisons of waveform and the frequency spectrum

Reproducibility

The reproducibility was checked with data with the same configuration

```
2015/01/14 Run1 (ice 60 deg., 0m)
```

```
2015/01/14 Run4 (ice 60 deg., 0m)
```


The difference in the amplitude is $5\% \rightarrow 10\%$ in power (Vol)

Far field confirmation

The antenna mast was intentionally rotated by ~15 deg. for Run3.

Time delay of 3.0 ns -> 0.90 m. The distance changed from 7.3 m to 8.2 m (7.3/8.2 = 0.89) Signal also reduced by 0.88 times. (from 297 mV to 262 mV) as expected. Confirmation of the far field condition

Time delay Vs. antenna height (Vpol)

The rotation angles checked by the time delay Constant time delay of ~1.5 ns for 60 deg. and no target case. This corresponds to ~7 deg. in the rotation angle.

Time development of polarization

High coherence, but not 2

Time development of coherence

Angular distribution

Observed signals are above the expected Askaryan radiation

Dependence of the input E-field

R. Gaior

Summary

- We have performed an experiment for the better understanding of Askaryan radiation and the calibration of the ARA detectors using TA-ELS
- Highly polarized and coherent signals were observed
- Observed signals are more than the expected Askaryan radiation
- We are going to understand our data in more detail using more detailed simulation which includes the background contribution

Backups

Radio wave through Askaryan effect

- ✓ 1962: Askaryan predicted coherent radio emission from excess negative charge in an EM shower (~20% due to mainly Compton scattering and positron annihilation) → Askaryan effect
- 2000: Attempt to measure Askaryan effect with Argonne Wakefield Accelerator (AWA) (P. W. Gorham et al., PRE 62, 6 (2000))
- 2001: First experimental detection of Askaryan effect at SLAC with silica sand (D. Saltzberg et al., PRL 86, 13 (2001))
- 2005: Observation of Askaryan effect in rock salt at SLAC (P. W. Gorham et al., PRD 72, 023002 (2005))
- 2007: Observation of Askaryan effect in ice at SLAC (P. W. Gorham et al., PRL 99, 171101 (2007))
- ✓ We intended to measure the Askaryan radio wave using the Telescope Array (TA) LINAC and use it for end-to-end calibration of the ARA detector

D. Saltzberg et al., PRL 86, 13 (2001)

Askaryan Radio Array (ARA)

Designed to observes high energy neutrinos above 100 PeV

Askaryan Radio Array

- \diamond 37 stations (3 stations deployed so far)
- ♦ Each station has 4 strings of 200m depth
- Each string has 2 Vpol + 2Hpol broadband antennas (~200–800 MHz)
- ✤ Total surface area ~100 km²

Astroparticle Physics 35 (2012) 457–477

The ARA sensitivity

23rd, July, 2015, ARA Col. Meeting

Transition radiation

- Transition Radiation (TR) was a severe background for the experiment performed by AWA
- Several places where TR is expected \checkmark
- \checkmark At the beam end cap (metal \rightarrow air): only vertical direction
- Air \rightarrow ice: TR suppressed because electrons terminated \checkmark before the formation zone. The angle closed to the Cherenkov angle
- Ice \rightarrow air: less electrons. The angle is close to the Cherenkov angle \rightarrow metal plate to reflect TR? \checkmark
- Evaluate more precisely with simulation

2

The origin of Ultra High Energy Cosmic Rays

Shed light on the UHECR origin

- \diamond Source evolution
- \diamond Composition (proton/iron)?
- Source position \diamond

IceCube: ~1 event/year expected

-> want MORE!

32

Askaryan effect

- 1962: Askaryan predicted coherent radio emission from excess negative charge in an EM shower (~20% due to mainly Compton scattering and positron annihilation)
 - \rightarrow Askaryan effect

Cherenkov emission (Frank-Tumm result)

$$\frac{d^2 W}{dv dl} = \frac{4\pi^2 \hbar}{c} \alpha z^2 y \left(1 - \frac{1}{\beta^2 n^2}\right)$$

in case N electrons, z=1 (not coherent) $\rightarrow W \propto N$ z=N (coherent) $\rightarrow W \propto N^2$

Power $\propto \Delta q^2$, thus prominent at EHE (>~ 10 PeV)

Attenuation length in ice ~ 1 km

23rd, July, 2015, ARA Col. Meeting

V-pol antenna

Bicone 150-850 MHz

H-pol antenna

Quad-slot cylinder 200-850 MHz Gain similar to dipole (+2 dBi)

,1

Current status and further plan

ARA3 event rate

- \diamond 3 stations operational
- \diamond 3 planned for 2014/2015
- \diamond More to come

Parameterization of Askaryan radio wave

J. Alvarez Muniz et al., PRD 62, 063001 (2000)

Signal amplitude

$$R\left|\vec{E}(\omega, R, \theta_{c})\right| \approx 2.53 \times 10^{-7} \left[\frac{E_{em}}{1 \, TeV}\right] \left[\frac{\nu}{\nu_{0}}\right] \left[\frac{1}{1 + (\nu / \nu_{0})^{1.44}}\right] VMHz^{-1}$$

$$v_0 = 1.15 \, GHz$$

J. Alvarez Muniz et al., Physics Lett. B, 411 (1997) 218

Signal spread

$$E(\omega, R, \theta) = E(\omega, R, \theta) e^{-\ln 2 \left(\frac{\theta - \theta_c}{\Delta \theta}\right)^2}$$

$$\Delta \theta = \begin{cases} 2.7^{\circ} \frac{v_0}{v} \left(\frac{E_0}{1 \, PeV}\right)^{-0.03} & \text{for } E_0 < 1 \, PeV \\ 2.7^{\circ} \frac{v_0}{v} \left(\frac{E_{LPM}}{0.14E_0 + E_{LPM}}\right)^{0.3} & \text{for } E_0 > 1 \, PeV \end{cases}$$

$$v_0 = 500 \, MHz$$

Incident particle energy \rightarrow signal characteristics Note: confirmed at SLAC

23rd, July, 2015, ARA Col. Meeting

- ♦ Attenuation length of the south pole ice
 - ♦ Optical: ~100m
 - ♦ Radio: ~1km
- Easier to make a bigger detector in an economical way

Antenna calibration

✓ 40 MeV electron beam

- Maximum electron number per bunch: 10⁹
- ✓ Pulse frequency: 2.86 GHz
 → pulse interval: 350 ps
- Bunch duration is 20 ns
- Output beam width: 7 mm
- ✓ Trigger signal available

23rd, July, 2015, ARA Col. Meeting

Antenna transmission coefficient

- Measured by network analyzer
- ✓ Simulation with XFdtd
- Measurement consistent with simulation
- ✓ The difference of top and bottom antenna due to pass-through cables

Top antenna **Bottom antenna**

Antenna pattern

- ✓ Same results from two simulations (HFSS and XFdtd)
- Measurements are on-going

HFSS

XFdtd

Transition radiation

- Transition Radiation (TR) was a severe background for the experiment performed by AWA
- Several places where TR is expected \checkmark
- \checkmark At the beam end cap (metal \rightarrow air): only vertical direction
- Air \rightarrow ice: TR suppressed because electrons terminated \checkmark before the formation zone. The angle closed to the Cherenkov angle
- Ice \rightarrow air: less electrons. The angle is close to the Cherenkov angle \rightarrow metal plate to reflect TR? \checkmark
- Evaluate more precisely with simulation

2