Surface Rx, status&plans (dzb, sn)

Anechoic chamber: after considerable tuning of feedpoint VSWR<3.5 from 30 MHz → 900 MHz Testbed surface Rx bandwidth: 25 → 300 MHz ARA01: 25 → 150 MHz (diplexed)

Surface Rx rationale

- What do the surface antennas get us?
 - Veto of down-coming signal
 - Possible radio-from-CR signals
 - Possible radio-from-TR signals
 - Surface point to extract n(z) (see Andrew/IIya work thus far extrapolates n(z) only based on 20-m δz)
- Results from Testbed & ARA01 (Allison et al., 2012)
 - Galactic noise studies
 - Solar flare observations

And....

- Recall testbed review: "Quantify bkgnds from down-coming signals mis-reconstructed as upcoming"
 - Although evidently not a problem for Thomas' ARA02/ARA03 analysis.
- Thomas et al http://xxx.lanl.gov/pdf/1503.02808.pdf:
 - TR due to CR showers impacting surface (although how come we haven't seen these yet?):

The emission from such a cosmic-ray air shower is calculated to be of similar strength as the Askaryan radio signal obtained from an in-ice cascade induced by a GZK-neutrino of similar energy. Furthermore, the polarization of the transition radiation will be similar to the polarization of the Askaryan signal. It follows that without directional information or a surface veto, it will be very hard to distinguish between both signals.

Surface Antennas hardware, overview

- Simplified version of in-ice antennas
 - No drilling (obviously)
 - No optical fiber; all signals carried over coax
- Although all based on the 'fat-dipole' design, slight evolution from:
 - testbed (UH) \rightarrow ARA01 (Achen) \rightarrow ARA02/ARA03 (KU)
 - ARA01 multiplexed 2 channels to have response <150 MHz.
 - ARA02/ARA03, dedicated channels, doubled bandwidth in effort to provide overlap with in-ice antennas
 - N.B. Same signal channel gain as ARA01!

A2/A3 surface Rx hardware reminder

Azimuthal gain pattern in-air Roughly frequencyindependent (anechoic chamber)

Front-end S21~36 dB (SHP-25)

Receiver S21~38 dB (SHP-25)

Full ch. gain (incl. 3 dB splitter)~71 dB

Each channel individually verified http://ara.physics.wisc.edu/docs/0006/000608/001/TestPlan.pdf

	Input	Atten	Input to Front End	Front End Amp	Output From Front End	Atten	Input to Receiver	Receiver Amp	Output From Receiver	Splitter Board	Final Output
dB	-4.98	-60	-64.98	36	-29.98	-32	-60.98	38	-22.98	-4	-26.98
Volts	3.98		0.004		0.251		0.006		0.501		0.316

So, assuming 20 uV at input (thermal+system) => expect ~80 mV rms for each surface antenna

(purposely set on high side in order to improve chances of triggering on downcoming CR)

Some archaeology

🗍 dms 🕏 wtr 🎟 bbc 🚥 5fl 👐 rzvr 🤾 kp 🚽 сл ///д 🎬 ARAw 🛱 ARAr

BH3 BVPol BH4 BVPol BH1 THPol BH2 THPol

Plot Points						
Time:						
1000		\$				
Histo:						
100		÷				

Plot:

RMS

1926

Show Scale Options

🗍 dms 🔮 wtr 🚥 bbc 🚥 5fl 👐 rzvr 🦂 kp 🕘 сл ///д 🎬 ARAw 端 ARAr

STATION3 -- Run 1000

Event: 494 -- Time: 2013-06-21 20:48:00 -- Trigger: 49454017.000000

STATION3 -- Run 4891

Event: 275 -- Time: 2015-07-13 12:17:46 -- Trigger: 81873826.000000

A3 2015 waveforms (>100 MHz & >200 MHz HPF overlaid)

ARA03/Ch16

ARA03/Ch18

ARA03/Ch17

Event 2 – Ch 19 – digitizer calibration?

ARA03/Ch16

ARA03/Ch18

2015 A2/<Vrms> vs. unixTimeUs – maybe seeing 'tail' of CP signal...

Why do some waveforms look crummy? A3 out-of-band noise, below 25 MHz

A3/2015/<V_{rms}(0 MHz \rightarrow 25 MHz)>

A2 out-of-band noise

$A2/2015/\langle V_{rms}(0 \text{ MHz} \rightarrow 25 \text{ MHz})$

A3 in-ice (note BH4 channels!)

ARA03 in-ice V(f) by channel (2015)

A2 2015 in-ice

Testbed galactic correlation

A2 galactic correlation? 25-100 MHz (top) vs. >200 MHz (bottom)

A3/Ch16: 25-100 MHz (top) vs. >200 MHz (bottom)

A3/Ch18

A3/Ch19 (n.g.)

A3/Ch19/2015 <V_{rms}> vs. DayOfYear

Correlations b/w channels

A3/2015/Black: Ch18 X Ch19 / Red: Ch18 X Ch17

Action Item #1

- Re-create signal chain and see if we can reproduce anomalously high low-frequency power in the lab
- However, the fact that this seems to show up in A3 BH4 suggests that this is a problem with the DAQ itself or calibration rather than the front-end or receiver electronics.
 - SA3 & SA4 & BH4 all input to the same DDA
 - Probably something that we'd like to figure out before 16-17 deployment, although
 - Understanding this perhaps requires more work than we have person-power
 - Accdg to patrick, we will likely not using the same digitizer for 2016-17, so maybe it doesn't matter for the future, anyway.

What else is needed to have useful surface Rx data?

- Modify read-out firmware to stagger readout of surface antennas by programmable delay (sasha)
 - Was not a big problem for the testbed since delays smaller
- Problem:
 - for veto, want surface trigger with delayed in-ice readout
 - For neutrinos, want in-ice trigger with delayed surface readout
- Near-term test:
 - For cal pulser events, delay surface antenna readout, accumulate enough data to verify that in-ice antennas work and also get an n(z) estimate.
- General solution (with no understanding of the feasibility):
 - <u>Read-out surface triggers and in-ice triggers independently,</u> <u>track and record GPS time for each.</u>

If we had someone who could update the firmware, it would also be good to:

- Take noise data at regular intervals (transmitter firmware)
- Modify ICL rooftop pulser so that it fires once every ten minutes, for clock synchronization of all ARA clocks
- (redundantly,) synch all stations to gpsd

antennas? "RADAR shower detection"

- If density (and mobility) of free charges sufficiently high, charges collectively behave as a plasma
 - Threshold density correlates with threshold primary energy initiating a shower
- TARA: Telescope Array Radar
 - Search for in-air radar reflections from 40 kW, 54.1 MHz Tx in conjunction with Telescope Array
 - In this case, free charge due to ionization
 - $\rho > \rho_c$ at r<1 cm from shower core => radar xsect $\sigma_{radar} \sim 200 \text{ cm}^2$
 - No signals found...
 - Either free-charge being `attached' to O_2 and/or N_2 , or reflective response of plasma `damped' through collisions with air molecules
- What about in-media (Kael, Thomas, Krijn)

In-ice detection

- Look for reflections from:
 - In-ice showers
 - Muon bundles
 - CR cores impacting surface
 - Accompanied by strong TR
- But we need a strong transmitter at tens of MHz frequency...

Super DARN

- 10 MHz signal; 10 kW
 - But only 4% duty cycle
 - Limited by their ability to pull heat out of the system

Vpol

Hpol

Significant power beamed into ice!

Proposed test locations (N.B. This would occur entirely independently of ARA, via separate communication with Jean and Vladimir)

What we would like to do in 2016-17

- 1. Take dedicated full-station data w/ surface Rx trigger.
- 2. Experiment with surface antenna $\delta \tau$ staggering wrt in-ice triggers to optimize use as veto w/ SN firmware.
 - 1. Tune on CP, ICL pulser and deep pulsers
- 3. Understand why there is so much low-frequency power in the surface antennas (& A3 BH4)