Trigger and Optimization Studies

Ming-Yuan Lu, UW-Madison ARA Collaboration Meeting

Outline

- Intro to ARA trigger
- What we know Trigger optimization Event N-chan Station size study
- Discussion –
 Smarter trigger + station design

Intro to ARA Trigger

ARA Instrumentation Central Station Xilinx Spartan6 FPGA: Electronics SBC Device control Station control, Data handling transfer For each string (4 X) DDA: TDA IRS2 digitizer chip ATRI board Calibration antennas FO Optical fibres from transmitter in-ice Antenna antennas clusters Optica Hpol ZONU receive Band filters Vpol

- Trigger scalars are defined and combined by ATRI
- Default trigger is a simple multiplicity trigger 3 out of 8 Vpol/Hpol channels have power excursions over threshold in a preset time frame
- \bullet Thresholds are set so that station rate stays ${\sim}5\text{Hz}$
- Thermal noise dominates trigger (>99%). Threshold is noise floor limited. Detection energy threshold at 1km is ~ 5PeV*

3

Trigger Optimization

• Start from the simple: Explore combinations of multiplicity m (m/8 Hpol/Vpol) and threshold n (in unit of noise diode sigma) to optimized neutrino trigger efficiency assuming specific spectrum.

Number of Noise Triggers

²⁰¹⁵ ARA Collaboration Meeting, Madison

Simulated E⁻² signal

2015 ARA Collaboration Meeting, Madison

Ratio to

1.00

benchmark

Simulated Kotera signal

2015 ARA Collaboration Meeting, Madison

Event Waveform N-chan

- Vrms is computed for each channel (take ½ wf w/o Vmax)
- Nchan = number of channels with |Vmax| > threshold * Vrms

10¹⁷ eV 1000 triggered events, waveform Nchan

Pure noise N-chan

- Simulated with n_{pwr}=4.9
- Low statistics (~1k events)

Station Size Study

- Study single ARA station sensitivity with various station sizes at constant noise rate
- Larger size -> better reconstruction
- Larger size -> higher threshold to restrain noise trigger -> loss of sensitivity ?
- "Size" d= Horizontal distance between opposite strings = Vertical distance between top and bottom antenna in a string
- d = {5,10,15,20,30,40,50,60,70,80,90,100,110,120,130,140,150} meters
- Benchmark: constant 5Hz noise rate. For each d the threshold is re-adjusted to reach this benchmark.

- Bottom antenna is always kept at 200m deep
- Spacing between same-string adjacent Hpols & Vpols: 1:8:1

Simulation result:

Signal event rate vs station size at trigger level

- Count the weighted number of events for each size simulation at trigger level. Forced interaction in ice in cylinder around station
- Each run 10k interactions

Simulation result:

Signal event rate vs station size – Nchan>3

Waveform Nchan > 3 : event must have at least 4 channels of the same polarization above threshold to survive. This is intended to be a simple cut for event reconstructability

Discussion

- Current station size (20m) unable to revolve vertex distance unless with ~<O(100ps) timing uncertainty
- Increasing station size by 2~3 times has no negative impact on trigger-level sensitivity, but will help reconstruction (need O(ns) timing resolution)
- The fact that a significant amount of events have high n-chan also implies room for a bigger station. This also suggests inter-string trigger may be overkill

Backup slides

Applying t-sequence to certain (m,n) simulation

Specifically, the "border" trigger combinations

Threshold factor in T-Seq algorithm

1. Calculate an envelope for each waveform (a sliding integration of squared samples):

$$E_j = \sqrt{\sum_{i=j-s}^j V_i^2}$$

with i,j=sample number, s=number of samples over which is integrated

- 2. Calculate average μ and standard deviation σ for this
- 3. Generate threshold as multiples of the standard deviation: $TH = \mu + th * \sigma$

With the version of filter code I got, the threshold is tuned for actual data.
 Did a simple threshold scan to and look for optimal signal/noise separation
 Noise simulated at (m,n)=(3,6.5)

Cutting on T-Seq quality parameters

- Noise: threshold scan -> for each threshold a Gaussian is fit to noise and a cut will be selected equal the 3σ deviation value in the positive end.
- 2. Signal @ each (m,n): threshold scan && make corresponding cut -> compute number of passed events at each threshold
- 3. For each (m, n), pick the threshold that gives max passed events
- 4. For all border (m,n), compare their individual max passed events, and see which (m,n) gives the most passed events

Max number of passed events

(m,n)	E-2			Kotera		
	Trigger Count	Pass Rate (%)	Passed Count	Trigger Count	Pass Rate (%)	Passed Count
(3,6.5)	336.00	92.89	1	438.21	94.57	1
(4,5.7)	323.70	93.91	0.97	424.54	97.16	0.995
(5,5.0)	274.11	94.67	0.83	386.02	95.51	0.89
(6,4.5)	238.26	97.81	0.75	391.19	96.57	0.91
(7,4.2)	225.30	97.93	0.71	358.27	96.19	0.83
(8,4.0)	205.98	98.06	0.65	327.90	99.05	0.78

Conclusion: after passing through T-Seq filter for reco-ability estimate, the current trigger configuration remains optimal

Trigger threshold variation

 To fix noise rate, the sizes correspond to a range of -8.5~12.1% difference from the regular operating value 6.47 sigma

Fix vertex positions Distance to station center: 1km Zenith angle: 110° Azimuth: 0° Isotropic neutrino flux Plot triggered neutrino travel direction

Reconstruction capability

- Larger size already implies longer baselines and better reconstruction resolution
- But a sparse spacing may partly "miss" the Cherenkov cone -> less baselines to do reconstruction
- Run n-channel filter, and set a cut on the number of channels

Size Simulation and N-channel cut

Plane wave reconstruction at UW - usually don't converge with n-channel < 4

AKA COllaboration Ivleeting 2014

Size Simulation and N-channel cut

Plane wave reconstruction at UW - usually don't converge with n-channel < 4

AKA COllaboration ivleeting 2014