radiospline: fast raytracing spline tables for radio event reconstruction

J. Kelley, M.-Y. Lu, M. Beheler-Amass, and M. Beydler

Radio Propagation in Ice

- Index of refraction in South Pole ice not uniform (firn layer)
- Spherical wave reconstruction: large systematic zenith angle errors
- Full ray-tracing code used for simulation; slow for reconstruction

Beamforming-based Reconstruction

- All-sky beamforming for directional reconstruction
 - arXiv:1404.5285
 - discrete tables of raytracing solutions
 - only two distances
- Goal: full ray-trace-based beamformed reconstruction
 - speed up beamforming with GPUs
 - smoothly interpolated raytrace solutions for fast time-delay lookup

tabulated raytrace time delays (C. Pfendner)

Spline-Fitted Raytrace Tables

- Smoothly interpolating many-dimensional tables solved for IceCube (B-splines)
 - photospline [CPC 184, 2214 (2013)]
- Technical challenges
 - discontinuities due to firn shadow, air/ice boundary
 - reflected solutions in addition to direct ray (deferred)
 - solution: cylindrical coordinates + multi-step table lookup

Firn Boundary Spline Table

Firn boundary table: fast determination if source / receiver solution possible

Cylindrical Raytrace Table

Produce raytrace table
t (r, z_{target}, z_{source})
using ray solver (C. Weaver)

• For smooth spline fit, linearly extrapolate past firn shadow boundary

• Time delays beyond shadow boundary will be discarded as previously described

Example raytrace spline fits

source in air: table points with fit

source in-ice: 2D residuals

Errors relative to raytracer

random sources in air

Gaussian Fit Differences Between Raytrace and Radiospline Delays, In Air

random sources in ice

Gaussian Fit Differences Between Raytrace and Radiospline Delays, In Ice

Agreement of in-air tables excellent; some outliers in ice (known issue with spline fits)

J. Kelley, ARA Collaboration Meeting

Aside: minor AraSim bug

- Large raytrace errors for sources just above firn surface (0 < z < \sim I m) when target is in the ice
 - could impact surface pulser analysis / simulation
- Patch sent to OSU

radiospline Performance

Random source/target locations (2.3 GHz Core i7)

Method	Average computation time / ray (ms)
AraSim raytracer	0.21
radiospline	0.00037

Spline lookup+evaluation is > 500 times faster than full raytrace calculation

Status and Next Steps

- Current version has sufficient accuracy for interferometry (see talk by M.-Y. Lu)
- Rerun in-ice fits with more spline knots
 - technical challenges: requires ~50GB of RAM and a different linear algebra library
- Fully decouple from IceCube repository
 - photospline is published but hidden behind CPC paywall
- Improve documentation, self-testing
- Release on WIPAC GitHub and/or ARA SVN
- What to do about 2nd solution (reflected ray?)