Interferometric Reconstruction with Radiospline

Ming-Yuan Lu, UW-Madison 2015 ARA Collaboration Meeting

Brief review of reconstruction methods so far

- Interferometric reconstruction with 2 hypothesized distances (30m & 3km)
- Matrix-based planewave reconstruction
- In general ~1° angular resolution can be achieved by both methods

Interferometric Reconstruction

- Attempt vertex reconstruction using relative timing information from hypothesized source positions
- Waveforms time-shifted according to computed delays

Where to Get Delays?

- Ice index of refraction varies with depth. Change is most drastic near surface (firn). As a result, EM waves travel in curved paths – raytracing
- Ideal direction/distance reconstruction need to take into account raytracing effect

2015 ARA Collaboration Meeting, Madison

Raytracing and Radiospline

Semi-analytic approach to compute ray paths by C. Weaver. Delays ۲ computed by this approach tabulated and fitted with B-Spline

²⁰¹⁵ ARA Collaboration Meeting, Madison

Full Cross Correlation Skymap

- All 8 Vpol channels used
- ARA3 Vpol calpulers reconstruction assuming 42m distance (=true distance)
- 2013 run673 cal event #2

2015 ARA Collaboration Meeting, Madison

Hilbert Envelope

• To remove graininess of skymap, take Hilbert envelope

Calpulser Reconstruction

- A3 2013 March filtered events D6BV pulser
- Calpulser distance fixed as known value (42m)

Angular Reconstruction

- Dataset: 10¹⁸eV neutrinos vertices randomly distributed up to 5km horizontal distance from ٠ station
- Trigger: default 3/8 multiplicity trigger
- Only allow single (1st) raytrace solution in simulation no reflection!
- As starting point, place stringent event selection criteria Nchnl(V_{peak} >5 σ_{noise}) >=4 Exclude saturated channels
- Assume simulation-true vertex distances in reconstruction

Angular reconstruction

Angular reconstruction

2015 AKA COllaboration Ivleeting, Ivladison

Vertex Position (angular+distance) Reconstruction Framework

- Time delays computed for all pixels on a set of Healpix skymaps at different "radii".
- Radii range from 200-5000m, constant interval 200m
- For each event, all N_{layer}* N_{direction} pixels are looked at. The pixel with the max coherence value is treated as giving reconstructed distance/ direction
- Simulation: 10¹⁸eV neutrinos on conventional multiplicity trigger. Only single raytrace solution is allowed.
- Event selection: Nchnl(V_{peak}>5σ)>=4 for clean/strong events. Saturation cut applied

Angular and Vertex Distance Reconstruction

17

Angular and Vertex Distance Reconstruction

Vertex Distance Reconstruction

Summary & Future Works

- An interferometric reconstruction framework with raytrace timing table was built. Vpol reconstruction of calpulsers successful.
- Framework tested with simulation. Distance as free parameter:
 Coherence cut ★: σ_θ:2.9° σ_φ:0.53°
 Coherence cut √: σ_θ:1.3° σ_φ:0.31°
- Vertex distance resolution is poor, possibly limited by our time resolution
- Simulation with larger baseline could verify the above hypothesis, and point to future designs
- Develop thermal / CW rejection methods

Backup

2015 ARA Collaboration Meeting, Madison

Event Vertex Reconstruction

- Direction reconstruction Identify backgrounds/anthropogenic sources
- Distance reconstruction –
 Neutrino energy
- Polarization measurement Neutrino direction

Parallel Implementation

- OpenCL parallelism facilitates fast implementation of reconstruction – waveform-shifting, FFT, cross-correlating, waveform-summing
- Multiple GPU/CPU can be combined to maximize speed boost

2D Angular Reconstruction

10¹⁸eV Simulated Single Solution Events

Vertex Distance Reconstruction

Question: with the ~flat distribution of coherence values around true vertex distance, can we use the distribution to get closer to the true distance?

Simple way 1: treat the layer with the maximum averaged coherence as giving reconstructed distance

Simple way 2: use averaged coherence value on all layers to compute a weighted reconstructed distance

Weighted Distance

ΔR [m]

Reconstruction tends to give result at the center of the distance phase space [20-5000] ->2600