The IceCube Experiment

Madison BootCamp 2015 Nancy Wandkowsky

Outline

- Why neutrinos?
- Why IceCube?
- How does IceCube work?
- What do neutrinos look like in IceCube?
- What are the physics goals of IceCube?
 - Astrophysical Neutrinos
 - Point Sources
 - Neutrino Oscillation

Why neutrinos?

- Crab Nebula: Supernova remnant (SN1054)
- emits light of all wavelengths

Why neutrinos?

- Crab Nebula: Supernova remnant (SN1054)
- emits light of all wavelengths

- gravitational energy released is transformed into acceleration of electromagnetic particles
- also acceleration when em particles cross magnetic fields

Cosmic Messengers

• Molecular clouds close to SN act as beam dumps

- neutral pions → protons, gammas
- charged pions → neutrons, neutrinos

with up to PeV energies!

Supernovae as galactic neutrino sources!

Cosmic Messengers

• Active Galactic Nuclei (AGN)

• acceleration stronger than in SN → above PeV energies possible!

Cosmic Messengers

- Neutrinos v are ideal messengers!
- CR and ν abundance tightly coupled

Cosmic Ray Spectra of Various Experiments

Why IceCube?

- steeply falling spectrum
- low-energy atmospheric neutrinos measured with water Cherenkov detectors (Super-Kamiokande: ~50 kt)
- high-energy atmospheric neutrinos → lower count rates
- extraterrestrial neutrinos at higher energies → even lower count rates

- What we need for a high-energy neutrino detector:
 - ➡ a huge volume of a transparent medium: antarctic ice

charged particles traveling faster than speed of light in a dielectric medium produce a Cherenkov cone

- What we need for a high-energy neutrino detector:
 - photon detectors to capture the light: Digital Optical Modules (DOM)

Penetrator

HV Divider

J. Kelley, Tue 9am

more on DOMs and

data acquisition:

Construction between Dec 2004 - Dec 2010

9M lbs of Cargo and fuel 300 Hercules LC 130 missions

- hot water drilling
- only limited number of holes per season (~12)

• Construction between Dec 2004 - Dec 2010

The IceCube Observatory

- 10 ms of IceCube data:
- ~275 mio atm. μ per day
- ~8250 atm. ν per month
- ~10 astroph. ν per year

challenge: find astrophysical neutrinos within a large background

track

$$\nu_{\mu} + \mathbf{N} \rightarrow \mu + \mathbf{X}$$

- upgoing: signal
- downgoing: likely background

 $v_e + N \rightarrow e + X$ $v_x + N \rightarrow v_x + N$

cascade

likely signal

x = any flavor

- For each event, we want to know the energy and direction
- How good does this work for tracks/cascades?

- For each event, we want to know the energy and direction
- How good does this work for tracks/cascades?

good direction resolution bad energy resolution

good energy resolution bad direction resolution

What are the physics goals of IceCube?

- Do astrophysical neutrinos exist?
- Where do astrophysical neutrinos (and CR) come from?
- How are they accelerated?
- What are the oscillation properties?
- Does dark matter exist?
- Do sterile neutrinos exist?
- many more...

What are the physics goals of IceCube?

- Do astrophysical neutrinos exist?
- Where do astrophysical neutrinos (and CR) come from?
- How are they accelerated?
- What are the oscillation properties?
- Does dark matter exist?
- Do sterile neutrinos exist?
- many more...

Anatomy of an IceCube analysis:

signal: astrophysical v; background: everything else

Idea: events starting in the detector have to be neutrinos → HESE (High Energy Starting Event) analysis

typical background

typical signal

use DOMs on outer layer as veto!

an event is marked as signal if:

- less than 3 of the first 250 photoelectrons were recorded in the veto region
 - → removes atmospheric muon background

an event is marked as signal if:

- less than 3 of the first 250 photoelectrons were recorded in the veto region
 - → removes atmospheric muon background
- it deposits more than 6000 PE
 - → removes some atmospheric neutrino background

Opening the 3y box: what did we find?

- HESE analysis reveals 37 neutrino event candidates
- Big Bird: highest energy neutrino (2.2 PeV)

"How significant is our result?"

How much background did we expect? → needs precise computer models!

"How significant is our result?"

How many events did we actually find?

 \rightarrow can this be explained by a background-only hypothesis?

Science 2013 510

Yes, they do!

- Goal: find a point source of neutrinos
- Let's look at the 3y HESE events on a sky map

- Goal: find a point source of neutrinos
- Let's look at the 3y HESE events on a sky map

- Goal: find a point source of neutrinos
- Let's look at the HESE events on a sky map

- Goal: find a point source of neutrinos
- Use muon neutrinos!
- upgoing: atm. + astroph. ν
- downgoing: ν + atm. muons

- Use muon neutrinos!
- upgoing: atm. + astroph. ν
- downgoing: ν + atm. muons

source found!

We don't know yet...

K.Spear

... but the search continues (with more data and better analysis techniques)

What are the oscillation properties?

- Goal: look for atmosph. muon- ν disappearance
- map parameter space: L/E
- L: arrival direction of ν determines path length
- E: reconstructed energy (O(GeV) → DC)
- background reduction: use IceCube as veto

$$P_{\alpha \to \beta, \alpha \neq \beta} = \sin^2(2\theta) \, \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

What are the oscillation properties?

Oscillation signal: disappearance of events in certain region of phase space

IceCube sees a clear disappearance of u_{μ}

What are the oscillation properties?

• The disappearance signal can be translated into the mixing parameters $sin^2(\theta_{23})$ and $|\Delta m_{32}^2|$

IceCube results consistent (and competitive!) with dedicated oscillation experiments

Summary

- IceCube: a 1km³ neutrino detector in the antarctic ice
- DOMs detect Cherenkov light of neutrino-induced charged particles or cosmic ray muons
- Challenge: discriminate signal from background
- Many interesting analyses:
 - HESE: astrophysical neutrinos exist
 - Point Source: no point sources found yet :(
 - Oscillation: IceCube as competitive oscillation experiment
 - many more: dark matter, magnetic monopoles, Cosmic Ray physics, Supernova, Gamma Ray Bursts...