## The Cherenkov Telescope Array

Peter Karn

### Fermi Gamma Ray Space Telescope



#### 5-year sky map



### High Altitude Water Cherenkov (HAWC) Observatory



#### Imaging Air Cherenkov Detectors



#### VERITAS



### Gamma ray astronomy is successful



#### ... and there is much more to find

#### CTA is the next generation

- Wide energy range: 20 GeV 300 TeV
- Field of view: 8-10  $^\circ$
- Energy resolution: 10-15%
- Angular resolution: < 0.1°
- Rapid slew time: 20 s

10x sensitivity and collection area of current generation



# Sites in North and South for full sky coverage



IceCube BootCamp, CTA Talk

## Three telescope sizes maximize science potential

#### Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes (LST's)

#### **Medium energies**

100 GeV – 10 TeV 9.5 to 12 m diameter 25 single-mirror telescopes up to 24 dual-mirror telescopes (MST's)

#### High energies

10 km<sup>2</sup> area at few TeV 4 to 6 m diameter 70 telescopes (SST's)

### CTA-US is working on the Schwarzschild-Couder Telescope



- Two mirror design
- Improved optics -> smaller SiPM camera
- 11,328 pixels
- 8° field of view
- Prototype in AZ this year
- Extension to CTA array

#### Camera Basics

- 177 SiPM focal plane modules
- 64 pixels per module:11,328 channels in total
- Readout, digitization, trigger assembly via TARGET custom ASIC



#### Assembled lattice and bulkhead



#### Camera Module







IceCube BootCamp, CTA Talk

#### Backplane fitting onto mechanics



Camera backplate with backplane test-fit, module inserter/ejector.

#### Science themes guide observing strategy

1) Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on their environment?
- 2) Probing Extreme Environments
  - Processes close to neutron stars, black holes
  - Processes in relativistic jets, winds, explosions

3) Physics Frontiers – beyond the SM

- What is the nature of dark matter?
- Is the speed of light a constant?
- Do axion-like particles exist?

Key Science Projects

e.g. Galactic and Extragalactic Surveys, Active Galaxies, etc.

#### CTA is a tool for the community

- All CTA data will be made public
- Legacy datasets
- Observing time shared between consortium (for Key Science Projects) and public



#### Galactic survey: wide and deep



#### 10x gain in sensitivity



#### Catching flares and bursts



# Cutting deep into dark matter parameter space



M. Wood et al. arXiv:1305.0302

IceCube BootCamp, CTA Talk

#### Positron fraction measurement

- Since Pamela, we have known fraction rises
- Explanations: local source or DM annihilation?
- Extend to high energies and measure exact shape of spectra for the answer
- CTA could go beyond energy range of AMS





#### The Cherenkov Telescope Array is coming in 2020



Over 1200 scientists in 29 countries are using their experience to create the next generation gamma-ray observatory, an instrument of great discovery potential and utility for the astrophysics community.

## Backup

#### **Telescope Stats**

|                                    | LST<br>"large"       | MST<br>"medium"      | SCT<br>"medium 2-M"  | SST<br>"small"     |
|------------------------------------|----------------------|----------------------|----------------------|--------------------|
| Number                             | 4 (S)<br>4 (N)       | 25 (S)<br>15 (N)     | ≤ 24 (S)             | 70 (S)             |
| Energy range                       | 20 GeV to<br>1 TeV   | 200 GeV to<br>10 TeV | 200 GeV to<br>10 TeV | > few TeV          |
| Effective<br>mirror area           | > 330 m <sup>2</sup> | > 90 m²              | > 40 m²              | > 5 m²             |
| Field of view                      | > 4.4°               | > 7°                 | > 7°                 | > 8°               |
| Pixel size<br>~PSF θ <sub>80</sub> | < 0.11º              | < 0.18º              | < 0.075°             | < 0.25°            |
| Positioning<br>time                | 50 s,<br>20 s goal   | 90 s,<br>60 s goal   | 90 s,<br>60 s goal   | 90 s,<br>60 s goal |
| Target capital cost                | 7.4 M€               | 1.6 M€               | < 2.0 M€             | 420 k€             |