Neutrino Astronomy in the Mediterranean: Past, Present and Future

R. Bruijn

Universiteit van Amsterdam/Nikhef

IPA 2015 Symposium, Madison

UNIVERSITEIT VAN AMSTERDAM

The past (1992-now)

Nemo and Nestor OM BUOY ANCHOR E.O. CABLE

Nemo Collaboration Astropart. Phys., 33 (2010), p. 263

3

Antares (past & present!)

- Operational since 2007
- 8 countries, 31 institutes, 150 scientists
- Program:
 - Neutrino astronomy
 - Multi-messenger
 - Dark Matter
 - Atmospheric neutrinos
 - 'Exotics': nuclearites, monopoles
 - Acoustic detection
 - Sea Science

Some selected results will follow

(Shower resolution similar to that of KM3NeT)

Note: for point source searches the background scales with *resolution*²

Neutrino energy [GeV] Location of the detector(s) allow for a view of the Galactic Plane ("Down" in IceCube is "up" in Antares/The Mediterranean)

Antares/The Mediterranean Sea

SNRs
 no counterpart

Antares – Galactic Source?

Possible Galactic source motivated by accumulation of IceCube events Hypothesized flux for a source at $(\alpha, \delta)=(-79^\circ, -23^\circ)$:

 $\Phi = 6 \times 10^{-8} E^{-2} \text{ GeV cm}^{-2} \text{ s}^{-1}$

(Gonzalez-Garcia et al, APP 57 (2014))

Antares excludes single point source as origin of hotspot around Galactic Center in a region of 20° (Astrophys. J. Lett. 786:L5 (2014))

Antares – Combined IceCube/Antares search

Combined Southern Hemisphere search with 2007-2012 Antares and IC40, IC59, and IC79 samples

(Note: Antares probes Southern sky at lower energies than IceCube, this is relevant for Galactic sources)

FERMI-LAT diffuse flux (E=3.4 GeV)

Antares – Galactic Ridge

On/Off Zones (N_{off}=8) Optimized for different models and MRF

Data from 2007-2011: N_{obs}: 177, N_{exp}: 166

 $0.8\,\sigma$ excess, 90 % limits set

KM3NeT

Present* and Future: KM3NeT

*: design phase started in 2006

KM3NeT builds on a long and succesful experience of exploiting the Mediterranean waters as a neutrino telescope ⁹

KM3NeT: phased approach

Phase	Building blocks	Primary Deliverables	Remarks	
1	0.2	Proof of feasibility and first science		Present
2	2	High resolution studies of neutrino signal reported by IceCube. All flavour neutrino astronomy	"ARCA"*	
	1	Neutrino mass hierarchy	"ORCA"*	Future
3	6	Neutrino astronomy		(Science driven)

*: <u>A</u>stroparticle & <u>O</u>scillations <u>Research with Cosmics in the Abyss</u> ¹⁰

PMTs+DOM

PMT Features:

➤ Timing	≤2ns (RMS)
≻QE	≥25-30%
Collection efficiency	≥90%
Photon counting purity	100% (by hits, ≤7)
➢ Price/cm2	≤10″ PMT

ETEL D792

Hamamatsu R12199

Segmented cathode area: 31 x 3" PMTs

- Directional Sensitivity
- <u>Photon Counting</u>
 Light concentrator ring
 Cathode area: ~ 3 x 10-inch PMT
 <u>Less overhead</u>

Custom low-power HV bases LED, piezo, compass and tiltmeter inside PMT Time-over-Threshold measurements FPGA readout

KM3NeT Design

Detection Units:

18 optical modules per vertical string ~36 m between optical modules Lowest optical module ~100 m above seabed Two Dyneema® ropes Backbone: 2 copper conductors; 18 fibres (+spares) Break out of cable at each optical module Base module with DWDM at anchor Cable for connection to seafloor network <u>Cost saving design</u>

Infrastructure:

612

m instrumented

Building blocks of 115 strings Sea-bed infrastructure (facility for long term high-bandwidth connection for sea-science, biology etc.) Optical data transmission *All-data-to-shore* Filtering/Trigger on-shore in computer farm

Photon arrival times (PDFs)

Mediterranean Sea Water: L_{abs} ~60-100 m L_{scat} ~50-70m

Angular resolution O(0.1°) can be reached

(Antares demonstrates and succesfully exploits the good angular resolution)

PPM DOM/DU

PPM-DOM: A prototype DOM on an Antares line (2500 m) Operational since april 2013 *Eur. Phys. J. C (2014) 74:3056*

PPM-DU: A detection unit consisting of 3 DOMS deployed at Capo Passero (3500 m) Operational since May 2014

PPM-DOM and PPM-DU results

Results from the PPM-DOM and PPM-DU validate the DOM design and prove the physics potential

Photon counting

Directional sensitivity at DOM level

(selected > 7 coincidences)

Phase-1 / DU-1

DU-1 : First full KM3NeT line

Assembled at the end of last year

Currently being prepared for deployment in June at KM3NeT-France site

Phase- 1 completion by end 201624 lines at KM3NeT-Italy site6 more "ORCA-style" (reduced length scales) lines at KM3NeT-Fr

The Future – ARCA (&ORCA)

➤ 2 Building blocks

- ~IceCube size
- High-resolution study of IceCube neutrino signal
- Letter of Intent

Cascades - Resolution

Cascade reconstruction uses photon counting capabilities of the DOMs

(Antares shower resolution is similar)

Cascade Analysis V1 – cut and count

- Online data filter: ≥ 5 coincidences between PMTs in same optical module (ΔT=10 ns)
- 2. Event filter: number of hits \geq 2000
- 3. Vertex cut: veto atmospheric muons
- 4. Energy cut: total time-over-threshold \ge 12 µs
- 5. MRF/MDP cut: 2D-cut based on Boosted Decision Tree & energy estimate

ARCA Sensitivity – Diffuse Neutrino Flux

20

ARCA Sensitivity – E⁻²Point source

Measurement of neutrino hierarchy using KM3NeT technology

Proposed ORCA detector Scaled down version of KM3NeT building block : 6 m vertical spacing

20 m horizontal distance

In the context of KM3NeT Phase-1: 6 ORCA strings by the end of 2016

KM3NeT/ORCA sensitivity (PRELIMINARY Feb 2015)

(115 strings, 18 DOMs/string)

ORCA

 ΔM^2

 Θ_{23}

23

Summary

- Neutrino astronomy in the Mediterranean is making steady progress for about 2 decades
- Antares makes significant contributions to the understanding of the neutrino events detected by IceCube
- Antares will continue to provide interesting results while KM3NeT is being constructed
- The Mediterranean sea-water allows for a good angular resolution which will be exploited by the KM3NeT phases
- Results from KM3NeT prototypes validate design and prove physics potential
- KM3NeT Phase-1 construction ongoing
- ARCA:
 - Investigation of IceCube signal with different methodology, complementary field of view and improved resolution
 - all-flavour neutrino astronomy
- ORCA:
 - Using KM3NeT technology to investigate neutrino mass hierarchy

BACKUP

ORCA sensitivity

- Mass hierarchy hypothesis test employing likelihood ratio
- Likelihood fitting of $\Delta M2$, $\theta 23$ and flux normalization
- Pseudo-experiments use
 - atmospheric neutrino flux (Frejus)
 - Neutrino cross sections (GENIE)
 - fixed set of oscillation parameters, $\delta CP = 0$
 - 3-flavour earth matter oscillations (checked against GLOBES)
 - track vs shower event classification
 - full MC detector efficiency / resolution response matrices
 - including misidentified and NC events
 - atmospheric muon contamination in track channel
 - neutral current event contamination

ARCA Cascade Analysis

ARCA Diffuse Flux

KM3NeT Detector optimization

For estimated flux from RXJ1713...

Resolution - Muon

Further future – KM3NeT Phase 3

Full KM3NeT - (detector with 6 building blocks) - Preliminary

Shore station (incl. computing)

- Deep-sea cable network
- Deployments
- Strings (without PMTs)
- PMTs (incl. base and lens)