

AMON Searches for Jointly-Emitting Neutrino+Gamma-Ray Transients

Azadeh Keivani *Þenn Stat*e

> IPA symposium Tuesday, May 5, 2015

AMON-Based Archival Analysis

In addition to real-time analysis, the AMON framework enables archival analysis:

- 1. helps us to better understand the datasets
- 2. explore different statistical approaches to generate AMON alerts for the network's follow-up partners

Current available neutrino and gamma-ray data:

- * IceCube
- * Fermi-LAT
- * Swift
- * ANTARES

This analysis: IceCube public data + Fermi-LAT public data

IceCube-Fermi Analysis

	IceCube	Fermi-LAT
Signal	Cosmic ν	Cosmic γ
Background	Atmospheric ν , CRs	Galactic γ , CRs
Energy	≥1 TeV	20 MeV - 100 GeV
PSF	Fisher: $\frac{1}{2\pi\sigma_v^2} \exp\left(-\frac{(\hat{x}_v - \hat{x})^2}{2\sigma_v^2}\right)$	King: $\frac{1}{2\pi\sigma_{\gamma}^2} \left(1 - \frac{1}{\gamma}\right) \left[1 + \frac{1}{2\gamma} \cdot \frac{(\hat{x}_{\gamma} - \hat{x})^2}{\sigma_{\gamma}^2}\right]^{-\gamma}$

- ♦ Temporal overlap \approx 41.5 weeks IC40, 1 year IC59
- ♦ Photon energy ≥ 200 MeV
- ♦ Photon and spacecraft zenith direction $< 65^{\circ}$
- \diamond IC40: Northern hemisphere neutrinos only

IC40-Fermi Analysis

0 500 1000 1500 0 500 1000 1500 2000 2500 3000 3500

10⁻¹⁰ 10⁻⁹ 10⁻⁸ counts per pixel

Fermi-LAT exposure corrected map IC40 neutrino data in northern hemisphere

 $\Rightarrow \approx 4 \times 10^6$ photon events $\Rightarrow \approx 15,000$ neutrino events ♦ Spatial coincidence: $< 10^{\circ}$ \diamond Temporal coincidence: ± 50 s

Null and Signal Distributions

To test the analysis effectiveness:

- 10,000 scrambled data tests: random timestamps and RA scrambled accordingly, Dec unchanged
- o 10,000 signal data tests

Un-binned log-likelihood function:

$$\lambda = 2\ln(P_{LAT}(\hat{x} \mid \hat{x}_{\gamma})P_{IC}(\hat{x} \mid \hat{x}_{\gamma})) - 2\ln(B(\hat{x}_{\gamma}))$$

 $B(\hat{x}_{\gamma})$ is the background rejection term

$$B(\hat{x}) = \int \Phi(\hat{x}, E) A(\hat{x}, E) dE \frac{\int \left(\frac{dN}{dE}\right)_{test} dE}{\int \left(\frac{dN}{dE}\right)_{test} A(\hat{x}, E) dE}$$

$$\propto \frac{\text{event rate}(\hat{x})}{\text{exposure}(\hat{x})}$$

Defining Statistical Excess

Results with the un-blinded data

Un-blinded histogram in comparison with the background model and a theoretical model with Nsig=70

Un-blinding the data: 2138 coincidences were found within the cuts of $\psi \le 10^\circ$ and $|\Delta t| \le 50$ s

AD test on this data yields $\approx 70 \ \nu + \gamma$ coincidences. The p-value for this observation = 4%

How do we vet the signal?

Three tests:

- > Multiplicity (one v multi γ)
- $\geq \Delta T$ (concentration within acceptance)
- ➢ Source map

Test for events with high log-likelihood (λ) Nsig=70: 2σ detection

High log-likelihood Events: Find λ_{cut}

SNR vs. λ_{cut}

Multiplicity (one v - multi γ)

ΔT distribution

We also check the **∆**T distribution: No significant difference between time bins seen

 $\chi^2/ndf = 2.47/5$

Source Map

Sky map of ν - γ pairs with $\lambda > 11$

Six ν - γ pairs lie within 2° of another pair

Clustering of V-Y pairs

IPA 2015

Summary

- We performed several statistical tests on observed data using the background and signal datasets:
 - ♦ AD test shows about 70 signal out of 2138 found coincidences
 - \diamond Multiplicity, Δ T, and clustering shows no signal excess
- There is no significant signal excess between IC40 and Fermi-LAT data
- Looking at IC59 and Fermi-LAT data next!

Thanks for your attention